ﻻ يوجد ملخص باللغة العربية
Solar Energetic Particles (SEPs) possess a high destructive potential as they pose multiple radiation hazards on Earth and onboard spacecrafts. The present work continues a series started with the paper by Borovikov et al.(2018) describing a computational tool to simulate and, potentially, predict the SEP threat based on the observations of the Sun. Here we present the kinetic model coupled with the globalMHD model for the Solar Corona (SC) and Inner Heliosphere (IH), which was described in the first paper in the series. At the heart of the coupled model is a self-consistent treatment of the Alfven wave turbulence. The turbulence not only heats corona, powers and accelerates the solar wind, but also serves as the main agent to scatter the SEPs and thus controls their acceleration and transport. The universal character of the turbulence in the coupled model provides a realistic description of the SEP transport by using the level of turbulence as validated with the solar wind and coronal plasma observations. At the same time, the SEP observations at 1 AU can be used to validate the model for turbulence in the IH, since the observed SEPs have witnessed this turbulence on their way through the IH.
Solar Energetic Particles (SEPs) are an important aspect of space weather. SEP events posses a high destructive potential, since they may cause disruptions of communication systems on Earth and be fatal to crew members onboard spacecrafts and, in ext
We fit the $sim$0.1-500 MeV/nucleon H-Fe spectra in 46 large SEP events surveyed by Desai et al. (2016) with the double power-law Band function to obtain a normalization constant, low- and high-energy parameters $gamma_a$ and $gamma_b$; and break ene
An interval of exceptional solar activity was registered in early September 2017, late in the decay phase of solar cycle 24, involving the complex Active Region 12673 as it rotated across the western hemisphere with respect to Earth. A large number o
Heavy ion ratio abundances in Solar Energetic Particle (SEP) events, e.g.~Fe/O, often exhibit decreases over time. Using particle instruments on the ACE, SOHO and STEREO spacecraft, we analysed heavy ion data from 4 SEP events taking place between De
The PAMELA satellite experiment is providing first direct measurements of Solar Energetic Particles (SEPs) with energies from about 80 MeV to several GeV in near-Earth space, bridging the low energy data by other space-based instruments and the Groun