ﻻ يوجد ملخص باللغة العربية
Solar Energetic Particles (SEPs) are an important aspect of space weather. SEP events posses a high destructive potential, since they may cause disruptions of communication systems on Earth and be fatal to crew members onboard spacecrafts and, in extreme cases, harmful to people onboard high altitude flights. However, currently the research community lacks efficient tools to predict such hazardous threat and its potential impacts. Such a tool is a first step for mankind to improve its preparedness for SEP events and ultimately to be able to mitigate their effects. The main goal of the presented research effort is to develop a computational tool that will have the forecasting capability and can be serve in operational system that will provide live information on the current potential threats posed by SEP based on the observations of the Sun. In the present paper the fundamentals of magneto-hydrodynamical (MHD) simulations are discussed to be employed as a critical part of the desired forecasting system.
Solar Energetic Particles (SEPs) possess a high destructive potential as they pose multiple radiation hazards on Earth and onboard spacecrafts. The present work continues a series started with the paper by Borovikov et al.(2018) describing a computat
We fit the $sim$0.1-500 MeV/nucleon H-Fe spectra in 46 large SEP events surveyed by Desai et al. (2016) with the double power-law Band function to obtain a normalization constant, low- and high-energy parameters $gamma_a$ and $gamma_b$; and break ene
An interval of exceptional solar activity was registered in early September 2017, late in the decay phase of solar cycle 24, involving the complex Active Region 12673 as it rotated across the western hemisphere with respect to Earth. A large number o
Heavy ion ratio abundances in Solar Energetic Particle (SEP) events, e.g.~Fe/O, often exhibit decreases over time. Using particle instruments on the ACE, SOHO and STEREO spacecraft, we analysed heavy ion data from 4 SEP events taking place between De
The PAMELA satellite experiment is providing first direct measurements of Solar Energetic Particles (SEPs) with energies from about 80 MeV to several GeV in near-Earth space, bridging the low energy data by other space-based instruments and the Groun