ﻻ يوجد ملخص باللغة العربية
Across the finite temperature transition to the quark-gluon plasma, the QCD topological susceptibility decreases sharply. Thus in the high temperature phase the remaining topological objects (possibly calorons) form a weakly interacting dilute gas. The overlap Dirac operator, through its exact zero modes, allows one to measure the net topological charge. We show that separately the number of positively and negatively charged topological objects can also be extracted from the low end of the overlap Dirac spectrum. We find that slightly above the phase transition their number distributions are already consistent with an ideal gas of non-interacting topological objects.
Since gluons in QCD are interacting fundamental constituents just as quarks are, we expect that in addition to mesons made from a quark and an antiquark, there should also be glueballs and hybrids (bound states of quarks, antiquarks and gluons). In g
We report on the progress of understanding spatial correlation functions in high temperature QCD. We study isovector meson operators in $N_f=2$ QCD using domain-wall fermions on lattices of $N_s=32$ and different quark masses. It has previously been
We compute charmonium spectral functions in 2-flavor QCD on anisotropic lattices using the maximum entropy method. Our results suggest that the S-waves (J/psi and eta_c) survive up to temperatures close to 2Tc, while the P-waves (chi_c0 and chi_c1) melt away below 1.2Tc.
We investigate the negative-parity baryon spectra in quenched lattice QCD. We employ the anisotropic lattice with standard Wilson gauge and O(a) improved Wilson quark actions at three values of lattice spacings with renormalized anisotropy xi=a_sigma
Based on a complete set of $J = 0$ and $J=1$ spatial isovector correlation functions calculated with $N_F = 2$ domain wall fermions we identify an intermediate temperature regime of $T sim 220 - 500$ MeV ($1.2T_c$--$2.8T_c$), where chiral symmetry is