ترغب بنشر مسار تعليمي؟ اضغط هنا

Exotic mesons in quenched lattice QCD

103   0   0.0 ( 0 )
 نشر من قبل Doug Toussaint
 تاريخ النشر 1997
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Since gluons in QCD are interacting fundamental constituents just as quarks are, we expect that in addition to mesons made from a quark and an antiquark, there should also be glueballs and hybrids (bound states of quarks, antiquarks and gluons). In general, these states would mix strongly with the conventional q-bar-q mesons. However, they can also have exotic quantum numbers inaccessible to q-bar-q mesons. Confirmation of such states would give information on the role of dynamical color in low energy QCD. In the quenched approximation we present a lattice calculation of the masses of mesons with exotic quantum numbers. These hybrid mesons can mix with four quark (q-bar-q-bar-q-q) states. The quenched approximation partially suppresses this mixing. Nonetheless, our hybrid interpolating fields also couple to four quark states. Using a four quark source operator, we demonstrate this mixing for the 1-+ meson. Using the conventional Wilson quark action, we calculate both at reasonably light quark masses, intending to extrapolate to small quark mass, and near the charmed quark mass, where we calculate the masses of some c-bar-c-g hybrid mesons. The hybrid meson masses are large --- over 4 GeV for charmonium and more than twice the vector meson mass at our smallest quark mass, which is near the strange quark mass.

قيم البحث

اقرأ أيضاً

We present a detailed study of the charmonium spectrum using anisotropic lattice QCD. We first derive a tree-level improved clover quark action on the anisotropic lattice for arbitrary quark mass. The heavy quark mass dependences of the improvement c oefficients, i.e. the ratio of the hopping parameters $zeta=K_t/K_s$ and the clover coefficients $c_{s,t}$, are examined at the tree level. We then compute the charmonium spectrum in the quenched approximation employing $xi = a_s/a_t = 3$ anisotropic lattices. Simulations are made with the standard anisotropic gauge action and the anisotropic clover quark action at four lattice spacings in the range $a_s$=0.07-0.2 fm. The clover coefficients $c_{s,t}$ are estimated from tree-level tadpole improvement. On the other hand, for the ratio of the hopping parameters $zeta$, we adopt both the tree-level tadpole-improved value and a non-perturbative one. We calculate the spectrum of S- and P-states and their excitations. The results largely depend on the scale input even in the continuum limit, showing a quenching effect. When the lattice spacing is determined from the $1P-1S$ splitting, the deviation from the experimental value is estimated to be $sim$30% for the S-state hyperfine splitting and $sim$20% for the P-state fine structure. Our results are consistent with previous results at $xi = 2$ obtained by Chen when the lattice spacing is determined from the Sommer scale $r_0$. We also address the problem with the hyperfine splitting that different choices of the clover coefficients lead to disagreeing results in the continuum limit.
The spectrum of orbitally excited $D_s$ mesons is computed in the continuum limit of quenched lattice QCD. The results are consistent with the interpretation that the narrow resonance in the $D_s pi^0$ channel discovered by the BABAR Collaboration is a $J^P=0^+$ $cbar{s}$ meson. Furthermore, within statistical errors, the $1^+-1^-$ and the $0^+-0^-$ mass splittings are equal, in agreement with the chiral multiplet structure predicted by heavy hadron chiral effective theory. On our coarsest lattice we present results from the first study of orbitally excited $D_s$ mesons with two flavors of dynamical quarks, with mass slightly larger than the strange quark mass. These results are consistent with the quenched data.
We compute charm and bottom quark masses in the quenched approximation and in the continuum limit of lattice QCD. We make use of a step scaling method, previously introduced to deal with two scale problems, that allows to take the continuum limit of the lattice data. We determine the RGI quark masses and make the connection to the MSbar scheme. The continuum extrapolation gives us a value m_b^{RGI} = 6.73(16) GeV for the b-quark and m_c^{RGI} = 1.681(36) GeV for the c-quark, corresponding respectively to m_b^{MSbar}(m_b^{MSbar}) = 4.33(10) GeV and m_c^{MSbar}(m_c^{MSbar}) = 1.319(28) GeV. The latter result, in agreement with current estimates, is for us a check of the method. Using our results on the heavy quark masses we compute the mass of the Bc meson, M_{Bc} = 6.46(15) GeV.
We present ground state spectra of mesons containing a charm and a bottom quark. For the charm quark we use overlap valence quarks while a non-relativistic formulation is utilized for the bottom quark on a background of 2+1+1 flavors HISQ gauge confi gurations generated by the MILC collaboration. The hyperfine splitting between $1S$ states of $B_c$ mesons is found to be $56^{+4}_{-3}$ MeV. We also study the baryons containing only charm and bottom quarks and predict their ground state masses. Results are obtained at three lattice spacings.
We present results for the binding energies for He and ^3He nuclei calculated in quenched lattice QCD at the lattice spacing of a = 0.128 fm with a heavy quark mass corresponding to m_pi = 0.8 GeV. Enormous computational cost for the nucleus correlat ion functions is reduced by avoiding redundancy of equivalent contractions stemming from permutation symmetry of protons or neutrons in the nucleus and various other symmetries. To distinguish a bound state from an attractive scattering state, we investigate the volume dependence of the energy difference between the nucleus and the free multi-nucleon states by changing the spatial extent of the lattice from 3.1 fm to 12.3 fm. A finite energy difference left in the infinite spatial volume limit leads to the conclusion that the measured ground states are bounded. It is also encouraging that the measured binding energies and the experimental ones show the same order of magnitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا