ترغب بنشر مسار تعليمي؟ اضغط هنا

Accurate Hydrologic Modeling Using Less Information

98   0   0.0 ( 0 )
 نشر من قبل Guy Shalev
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Joint models are a common and important tool in the intersection of machine learning and the physical sciences, particularly in contexts where real-world measurements are scarce. Recent developments in rainfall-runoff modeling, one of the prime challenges in hydrology, show the value of a joint model with shared representation in this important context. However, current state-of-the-art models depend on detailed and reliable attributes characterizing each site to help the model differentiate correctly between the behavior of different sites. This dependency can present a challenge in data-poor regions. In this paper, we show that we can replace the need for such location-specific attributes with a completely data-driven learned embedding, and match previous state-of-the-art results with less information.

قيم البحث

اقرأ أيضاً

Accurate and scalable hydrologic models are essential building blocks of several important applications, from water resource management to timely flood warnings. However, as the climate changes, precipitation and rainfall-runoff pattern variations be come more extreme, and accurate training data that can account for the resulting distributional shifts become more scarce. In this work we present a novel family of hydrologic models, called HydroNets, which leverages river network structure. HydroNets are deep neural network models designed to exploit both basin specific rainfall-runoff signals, and upstream network dynamics, which can lead to improved predictions at longer horizons. The injection of the river structure prior knowledge reduces sample complexity and allows for scalable and more accurate hydrologic modeling even with only a few years of data. We present an empirical study over two large basins in India that convincingly support the proposed model and its advantages.
129 - Eric Heim 2015
Learning a model of perceptual similarity from a collection of objects is a fundamental task in machine learning underlying numerous applications. A common way to learn such a model is from relative comparisons in the form of triplets: responses to q ueries of the form Is object a more similar to b than it is to c?. If no consideration is made in the determination of which queries to ask, existing similarity learning methods can require a prohibitively large number of responses. In this work, we consider the problem of actively learning from triplets -finding which queries are most useful for learning. Different from previous active triplet learning approaches, we incorporate auxiliary information into our similarity model and introduce an active learning scheme to find queries that are informative for quickly learning both the relevant aspects of auxiliary data and the directly-learned similarity components. Compared to prior approaches, we show that we can learn just as effectively with much fewer queries. For evaluation, we introduce a new dataset of exhaustive triplet comparisons obtained from humans and demonstrate improved performance for different types of auxiliary information.
Despite the tremendous progress in the estimation of generative models, the development of tools for diagnosing their failures and assessing their performance has advanced at a much slower pace. Recent developments have investigated metrics that quan tify which parts of the true distribution is modeled well, and, on the contrary, what the model fails to capture, akin to precision and recall in information retrieval. In this paper, we present a general evaluation framework for generative models that measures the trade-off between precision and recall using Renyi divergences. Our framework provides a novel perspective on existing techniques and extends them to more general domains. As a key advantage, this formulation encompasses both continuous and discrete models and allows for the design of efficient algorithms that do not have to quantize the data. We further analyze the biases of the approximations used in practice.
Human Activity Recognition (HAR) based on IMU sensors is a crucial area in ubiquitous computing. Because of the trend of deploying AI on IoT devices or smartphones, more researchers are designing different HAR models for embedded devices. Deployment of models in embedded devices can help enhance the efficiency of HAR. We propose a multi-level HAR modeling pipeline called Stage-Logits-Memory Distillation (SMLDist) for constructing deep convolutional HAR models with embedded hardware support. SMLDist includes stage distillation, memory distillation, and logits distillation. Stage distillation constrains the learning direction of the intermediate features. The teacher model teaches the student models how to explain and store the inner relationship among high-dimensional features based on Hopfield networks in memory distillation. Logits distillation builds logits distilled by a smoothed conditional rule to preserve the probability distribution and enhance the softer target accuracy. We compare the accuracy, F1 macro score, and energy cost on embedded platforms of a MobileNet V3 model built by SMLDist with various state-of-the-art HAR frameworks. The product model has a good balance with robustness and efficiency. SMLDist can also compress models with a minor performance loss at an equal compression ratio to other advanced knowledge distillation methods on seven public datasets.
In semi-supervised learning, information from unlabeled examples is used to improve the model learned from labeled examples. But in some learning problems, partial label information can be inferred from otherwise unlabeled examples and used to furthe r improve the model. In particular, partial label information exists when subsets of training examples are known to have the same label, even though the label itself is missing. By encouraging a model to give the same label to all such examples, we can potentially improve its performance. We call this encouragement emph{Nullspace Tuning} because the difference vector between any pair of examples with the same label should lie in the nullspace of a linear model. In this paper, we investigate the benefit of using partial label information using a careful comparison framework over well-characterized public datasets. We show that the additional information provided by partial labels reduces test error over good semi-supervised methods usually by a factor of 2, up to a factor of 5.5 in the best case. We also show that adding Nullspace Tuning to the newer and state-of-the-art MixMatch method decreases its test error by up to a factor of 1.8.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا