ﻻ يوجد ملخص باللغة العربية
The scattering phase-shifts are invariant under unitary transformations of the Hamiltonian. However, the numerical solution of the scattering problem that requires to discretize the continuum violates this phase-shift invariance among unitarily equivalent Hamiltonians. We extend a newly found prescription for the calculation of phase shifts which relies only on the eigenvalues of a relativistic Hamiltonian and its corresponding Chebyshev angle shift. We illustrate this procedure numerically considering $pipi$, $pi N$ and $NN$ elastic interactions which turns out to be competitive even for small number of grid points.
The solution of the scattering problem based on the Lippmann-Schwinger equation requires in many cases a discretization of the spectrum in the continuum which does not respect the unitary equivalence of the S-matrix on the finite grid. We present a n
We consider the $pipi$-scattering problem in the context of the Kadyshevsky equation. In this scheme, we introduce a momentum grid and provide an isospectral definition of the phase-shift based on the spectral shift of a Chebyshev angle. We address t
Equivalent interactions in a low-momentum space for the $Lambda N$, $Sigma N$ and $Xi N$ interactions are calculated, using the SU$_6$ quark model potential as well as the Nijmegen OBEP model as the input bare interaction. Because the two-body scatte
We consider quantum inverse scattering with singular potentials and calculate the Sine-Gordon model effective potential in the laboratory and centre-of-mass frames. The effective potentials are frame dependent but closely resemble the zero-momentum p
Hydrodynamics is a general theoretical framework for describing the long-time large-distance behaviors of various macroscopic physical systems, with its equations based on conservation laws such as energy-momentum conservation and charge conservation