ﻻ يوجد ملخص باللغة العربية
Hydrodynamics is a general theoretical framework for describing the long-time large-distance behaviors of various macroscopic physical systems, with its equations based on conservation laws such as energy-momentum conservation and charge conservation. Recently there has been significant interest in understanding the implications of angular momentum conservation for a corresponding hydrodynamic theory. In this work, we examine the key conceptual issues for such a theory in the relativistic regime where the orbital and spin components get entangled. We derive the equations for relativistic viscous hydrodynamics with angular momentum through Navier-Stokes type of gradient expansion analysis.
Event-by-event viscous hydrodynamics is combined with heavy quark energy loss models to compute heavy flavor flow cumulants $v_2{2}$, $v_3{2}$, and $v_2{4}$ as well as the nuclear modification factors of $D^0$ and $B^0$ mesons in PbPb collisions at 2
We present the hybrid hadron string dynamic (HydHSD) model connecting the parton-hadron-string dynamic model (PHSD) and a hydrodynamic model taking into account shear viscosity within the Israel-Stewart approach. The performance of the code is tested
We extend our hybrid model HydHSD by taking into account shear viscosity within the Israel-Stewart hydrodynamics. The influence of different forms of $pi^{mu u}$ constraints on observables is analyzed. We show that the form of the corresponding condi
Relativistic hydrodynamics represents a powerful tool to investigate the time evolution of the strongly interacting quark gluon plasma created in ultrarelativistic heavy ion collisions. The equations are solved often numerically, and numerous analyti
Recently it has been shown that a realistic description of the medium via event-by-event viscous hydrodynamics plays an important role in the long-standing $R_text{AA}$ vs. $v_2$ puzzle at high $p_T$. In this proceedings we begin to extend this appro