ترغب بنشر مسار تعليمي؟ اضغط هنا

Scattering rate collapse driven by a van Hove singularity in the Dirac semi-metal PdTe$_{2}$

228   0   0.0 ( 0 )
 نشر من قبل Erik van Heumen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present optical measurements of the transition metal dichalcogenide PdTe$_{2}$. The reflectivity displays an unusual temperature and energy dependence in the far-infrared, which we show can only be explained by a collapse of the scattering rate at low temperature, resulting from the vicinity of a van Hove singularity near the Fermi energy. An analysis of the optical conductivity suggests that below 150 K a reduction in the available phase space for scattering takes place, resulting in long-lived quasiparticle excitations. We suggest that this reduction in phase space provides experimental evidence for a van Hove singularity close to the Fermi level. Our data furthermore indicates a very weak electron-phonon coupling. Combined this suggests that the superconducting transition temperature is set by the density of states associated with the van Hove singularity.

قيم البحث

اقرأ أيضاً

96 - S.I. Mukhin 2006
A mechanism of self-organized one-dimensionality in correlated electron system coupled to optical phonon mode is proposed. It is found that a lattice vibration may compactify electron motion effectively to a one-dimensional space and trigger quantum phase transition into ordered state with extended van Hove singularities in the electronic Floquet modes spectrum. This mechanism may be of relevance for observed enhancement of the ordering instability in the anti-nodal regions of the Fermi surface in the high-Tc cuprates, which is accompanied by anomalous softening of some optical phonon modes. A destruction of the effect by special microwave radiation is predicted, followed by a partial release of the zero-point vibration energy of the coupled optical phonon mode.
The electronic band structure of the 2D kagome net hosts two different types of van Hove singularities (vHs) arising from an intrinsic electron-hole asymmetry. The distinct sublattice flavors (pure and mixed, p-type and m-type) and pairing instabilit ies associated to the two types of vHs are key to understand the unconventional many-body phases of the kagome lattice. Here, in a recently discovered kagome metal CsV3Sb5 exhibiting charge order and superconductivity, we have examined the vHs, Fermi surface nesting, and many-body gap opening. Using high-resolution angle-resolved photoemission spectroscopy (ARPES), we identify multiple vHs coexisting near the Fermi level of CsV3Sb5, including both p- and m-types of vHs emerging from dxz/dyz kagome bands and a p-type vHs from dxy/dx2-y2 kagome bands. Among the multiple vHs, the m-type vHs is located closest to the Fermi level and is characterized by sharp Fermi surface nesting and gap opening across the charge order transition. Our work reveals the essential role of kagome-derived vHs as a driving mechanism for the collective phenomena realized in the AV3Sb5 family (A = K, Rb, Cs) and paves the way for a deeper understanding of strongly correlated topological kagome systems.
In the context of the relaxation time approximation to Boltzmann transport theory, we examine the behavior of the Hall number, $n_H$, of a metal in the neighborhood of a Lifshitz transition from a closed Fermi surface to open sheets. We find a univer sal non-analytic dependence of $n_H$ on the electron density in the high field limit, but a non-singular dependence at low fields. The existence of an assumed nematic transition produces a doping dependent $n_H$ similar to that observed in recent experiments in the high temperature superconductor YBa$_2$Cu$_3$O$_{7-x}$.
A van Hove singularity (VHS) often significantly amplifies the electronic instability of a crystalline solid, including correlation-induced phenomena such as Hunds metallicity. We perform a systematic study on the interplay between Hunds coupling and electronic structures with a VHS focusing on Hunds metallicity. We construct a simplified tight-binding model targeting cubic perovskite materials and test the effects of the VHS utilizing dynamical mean-field theory with an exact diagonalization solver. The quasiparticle weight and the low-frequency power exponent of the self-energy provide a quantitative estimation of metallicity over the phase diagram. We find the VHS to substantially enhance Hunds metallicity. The results here suggest a range of parameters through which a VHS can bring great synergy with Hunds coupling.
A topological Dirac semimetal is a novel state of quantum matter which has recently attracted much attention as an apparent 3D version of graphene. In this paper, we report critically important results on the electronic structure of the 3D Dirac semi metal Na3Bi at a surface that reveals its nontrivial groundstate. Our studies, for the first time, reveal that the two 3D Dirac cones go through a topological change in the constant energy contour as a function of the binding energy, featuring a Lifshitz point, which is missing in a strict 3D analog of graphene (in other words Na3Bi is not a true 3D analog of graphene). Our results identify the first example of a band saddle point singularity in 3D Dirac materials. This is in contrast to its 2D analogs such as graphene and the helical Dirac surface states of a topological insulator. The observation of multiple Dirac nodes in Na3Bi connecting via a Lifshitz point along its crystalline rotational axis away from the Kramers point serves as a decisive signature for the symmetry-protected nature of the Dirac semimetals topological groundstate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا