ﻻ يوجد ملخص باللغة العربية
While implicit feedback (e.g., clicks, dwell times, etc.) is an abundant and attractive source of data for learning to rank, it can produce unfair ranking policies for both exogenous and endogenous reasons. Exogenous reasons typically manifest themselves as biases in the training data, which then get reflected in the learned ranking policy and often lead to rich-get-richer dynamics. Moreover, even after the correction of such biases, reasons endogenous to the design of the learning algorithm can still lead to ranking policies that do not allocate exposure among items in a fair way. To address both exogenous and endogenous sources of unfairness, we present the first learning-to-rank approach that addresses both presentation bias and merit-based fairness of exposure simultaneously. Specifically, we define a class of amortized fairness-of-exposure constraints that can be chosen based on the needs of an application, and we show how these fairness criteria can be enforced despite the selection biases in implicit feedback data. The key result is an efficient and flexible policy-gradient algorithm, called FULTR, which is the first to enable the use of counterfactual estimators for both utility estimation and fairness constraints. Beyond the theoretical justification of the framework, we show empirically that the proposed algorithm can learn accurate and fair ranking policies from biased and noisy feedback.
Building fair machine learning models becomes more and more important. As many powerful models are built by collaboration among multiple parties, each holding some sensitive data, it is natural to explore the feasibility of training fair models in cr
Policies trained via Reinforcement Learning (RL) are often needlessly complex, making them more difficult to analyse and interpret. In a run with $n$ time steps, a policy will decide $n$ times on an action to take, even when only a tiny subset of the
Search and recommendation systems, such as search engines, recruiting tools, online marketplaces, news, and social media, output ranked lists of content, products, and sometimes, people. Credit ratings, standardized tests, risk assessments output onl
In this paper we propose a causal modeling approach to intersectional fairness, and a flexible, task-specific method for computing intersectionally fair rankings. Rankings are used in many contexts, ranging from Web search results to college admissio
Off-policy evaluation (OPE) leverages data generated by other policies to evaluate a target policy. Previous OPE methods mainly focus on precisely estimating the true performance of a policy. We observe that in many applications, (1) the end goal of