ﻻ يوجد ملخص باللغة العربية
We prove that the topological recursion formalism can be used to compute the WKB expansion of solutions of second order differential operators obtained by quantization of any hyper-elliptic curve. We express this quantum curve in terms of spectral Darboux coordinates on the moduli space of meromorphic $mathfrak{sl}_2$-connections on $mathbb{P}^1$ and argue that the topological recursion produces a $2g$-parameter family of associated tau functions, where $2g$ is the dimension of the moduli space considered. We apply this procedure to the 6 Painleve equations which correspond to $g=1$ and consider a $g=2$ example.
We prove that the topological recursion formalism can be used to quantize any generic classical spectral curve with smooth ramification points and simply ramified away from poles. For this purpose, we build both the associated quantum curve, i.e. the
Starting from loop equations, we prove that the wave functions constructed from topological recursion on families of degree $2$ spectral curves with a global involution satisfy a system of partial differential equations, whose equations can be seen a
We show that almost all the linear differential operators factors obtained in the analysis of the n-particle contribution of the susceptibility of the Ising model for $, n le 6$, are operators associated with elliptic curves. Beyond the simplest fact
Topological recursion associates to a spectral curve, a sequence of meromorphic differential forms. A tangent space to the moduli space of spectral curves (its space of deformations) is locally described by meromorphic 1-forms, and we use form-cycle
In this article, we study the large $n$ asymptotic expansions of $ntimes n$ Toeplitz determinants whose symbols are indicator functions of unions of arc-intervals of the unit circle. In particular, we use an Hermitian matrix model reformulation of th