ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal trapping law induced by atomic cloud in single-photon cooperative dynamics

62   0   0.0 ( 0 )
 نشر من قبل Qiao Lei
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single-photon cooperative dynamics of an assembly of two-level quantum emitters coupled by a bosonic bath are investigated. The bosonic bath is general and it can be anything as long as the exchange of excitations between quantum emitters and bath is present. In these systems, it is found that the population on the excited emitter keeps a simple and universal trapping law due to the existence of systems dark states. Different from the trapping regime caused by photonemitter dressed states, this type of trapping is only associated with the number of quantum emitters. According to the trapping law, the cooperative spontaneous emission at single-photon level in this kind of systems is universally inhibited when the emitter number is large enough.



قيم البحث

اقرأ أيضاً

48 - H. H. Jen , M.-S. Chang , 2016
We propose a set of subradiant states which can be prepared and detected in a one-dimensional optical lattice. We find that the decay rates are highly dependent on the spatial phases imprinted on the atomic chain, which gives systematic investigation s of the subradiance in the fluorescence experiments. The time evolution of these states can have long decay time where up to hundred milliseconds of lifetime is predicted for one hundred atoms. They can also show decayed Rabi-like oscillations with a beating frequency determined by the difference of cooperative Lamb shift in the subspace. Experimental requirements are also discussed for practical implementation of the subradiant states. Our proposal provides a novel scheme for quantum storage of photons in arrays of two-level atoms through the preparation and detection of subradiant states, which offer opportunities for quantum many-body state preparation and quantum information processing in optical lattices.
We study the dynamics of a single collective excitation in a cold ensemble of atoms coupled to a one-dimensional waveguide. The coupling between the atoms and the photonic modes provides a coherent and a dissipative dynamics for this collective excit ation. While the dissipative part accounts for the collectively enhanced and directed emission of photons, we find a remarkable universal dynamics for increasing atom numbers exhibiting several revivals under the coherent part. While this phenomenon provides a limit on the intrinsic dephasing for such a collective excitation, a setup is presented, where this remarkable universal dynamics can be explored.
We propose to couple single atomic qubits to photons incident on a cavity containing an atomic ensemble of a different species that mediates the coupling via Rydberg interactions. Subject to a classical field and the cavity field, the ensemble forms a collective dark state which is resonant with the input photon, while excitation of a qubit atom leads to a secondary dark state that splits the cavity resonance. The two different dark state mechanisms yield zero and $pi$ reflection phase shifts and can be used to implement quantum gates between atomic and optical qubits.
We illustrate the existence of single-excitation bound states for propagating photons interacting with $N$ two-level atoms. These bound states can be calculated from an effective spin model, and their existence relies on dissipation in the system. Th e appearance of these bound states is in a one-to-one correspondence with zeros in the single-photon transmission and with divergent bunching in the second-order photon-photon correlation function. We also formulate a dissipative version of Levinsons theorem for this system by looking at the relation between the number of bound states and the winding number of the transmission phases. This theorem allows a direct experimental measurement of the number of bound states using the measured transmission phases.
We report the cooling of an atomic ensemble with light, where each atom scatters only a single photon on average. This is a general method that does not require a cycling transition and can be applied to atoms or molecules which are magnetically trap ped. We discuss the application of this new approach to the cooling of hydrogenic atoms for the purpose of precision spectroscopy and fundamental tests.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا