ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergent universal dynamics for an atomic cloud coupled to an optical wave-guide

71   0   0.0 ( 0 )
 نشر من قبل Jan Kumlin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dynamics of a single collective excitation in a cold ensemble of atoms coupled to a one-dimensional waveguide. The coupling between the atoms and the photonic modes provides a coherent and a dissipative dynamics for this collective excitation. While the dissipative part accounts for the collectively enhanced and directed emission of photons, we find a remarkable universal dynamics for increasing atom numbers exhibiting several revivals under the coherent part. While this phenomenon provides a limit on the intrinsic dephasing for such a collective excitation, a setup is presented, where this remarkable universal dynamics can be explored.



قيم البحث

اقرأ أيضاً

We present a novel hybrid system where an optical cavity is integrated with a microfabricated planar-electrode ion trap. The trap electrodes produce a tunable periodic potential allowing the trapping of up to 50 separate ion chains spaced by 160 $mu$ m along the cavity axis. Each chain can contain up to 20 individually addressable Ybtextsuperscript{+} ions coupled to the cavity mode. We demonstrate deterministic distribution of ions between the sites of the electrostatic periodic potential and control of the ion-cavity coupling. The measured strength of this coupling should allow access to the strong collective coupling regime with $lesssim$10 ions. The optical cavity could serve as a quantum information bus between ions or be used to generate a strong wavelength-scale periodic optical potential.
We study the modification of the atomic spontaneous emission rate, i.e. Purcell effect, of $^{87}$Rb in the vicinity of an optical nanofiber ($sim$500 nm diameter). We observe enhancement and inhibition of the atomic decay rate depending on the align ment of the induced atomic dipole relative to the nanofiber. Finite-difference time-domain simulations are in quantitative agreement with the measurements when considering the atoms as simple oscillating linear dipoles. This is surprising since the multi-level nature of the atoms should produce a different radiation pattern, predicting smaller modification of the lifetime than the measured ones. This work is a step towards characterizing and controlling atomic properties near optical waveguides, fundamental tools for the development of quantum photonics.
We propose a novel platform for the investigation of quantum wave packet dynamics, offering a complementary approach to existing theoretical models and experimental systems. It relies on laser-cooled neutral atoms which orbit around an optical nanofi ber in an optical potential produced by a red-detuned guided light field. We show that the atomic center-of-mass motion exhibits genuine quantum effects like collapse and revival of the atomic wave packet. As distinctive advantages, our approach features a tunable dispersion relation as well as straightforward readout for the wave packet dynamics and can be implemented using existing quantum optics techniques.
We experimentally and theoretically investigate collective radiative effects in an ensemble of cold atoms coupled to a single-mode optical nanofiber. Our analysis unveils the microscopic dynamics of the system, showing that collective interactions be tween the atoms and a single guided photon gradually build-up along the atomic array in the direction of propagation of light. These results are supported by time-resolved measurements of the light transmitted and reflected by the ensemble after excitation via nanofiber-guided laser pulses, whose rise and fall times are shorter than the atomic lifetime. Superradiant decays more than one order of magnitude faster than the single-atom free-space decay rate are observed for emission in the forward-propagating guided mode, while at the same time no speed-up of the decay rate are measured in the backward direction. In addition, position-resolved measurements of the light that is transmitted past the atoms are performed by inserting the nanofiber-coupled atomic array in a 45-m long fiber ring-resonator, which allow us to experimentally reveal the progressive growth of the collective response of the atomic ensemble. Our results highlight the unique opportunities offered by nanophotonic cold atom systems for the experimental investigation of collective light-matter interaction.
We show that coherent multiple light scattering, or diffuse light propagation, in a disordered atomic medium, prepared at ultra-low temperatures, can be be effectively delayed in the presence of a strong control field initiating a stimulated Raman pr ocess. On a relatively short time scale, when the atomic system can preserve its configuration and effects of atomic motion can be ignored, the scattered signal pulse, diffusely propagating via multiple coherent scattering through the medium, can be stored in the spin subsystem through its stimulated Raman-type conversion into spin coherence. We demonstrate how this mechanism, potentially interesting for developing quantum memories, would work for the example of a coherent light pulse propagating through an alkali-metal atomic vapor under typical conditions attainable in experiments with ultracold atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا