ترغب بنشر مسار تعليمي؟ اضغط هنا

$^{222}$Rn contamination mechanisms on acrylic surfaces

131   0   0.0 ( 0 )
 نشر من قبل Eleonora Quadrivi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, the $^{222}$Rn contamination mechanisms on acrylic surfaces have been investigated. $^{222}$Rn can represent a significant background source for low-background experiments, and acrylic is a suitable material for detector design thanks to its purity and transparency. Four acrylic samples have been exposed to a $^{222}$Rn rich environment for different time periods, being contaminated by $^{222}$Rn and its progenies. Subsequently, the time evolution of radiocontaminants activity on the samples has been evaluated with $alpha$ and $gamma$ measurements, highlighting the role of different decay modes in the contamination process. A detailed analysis of the alpha spectra allowed to quantify the implantation depth of the contaminants. Moreover, a study of both $alpha$ and $gamma$ measurements pointed out the $^{222}$Rn diffusion inside the samples.



قيم البحث

اقرأ أيضاً

The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $^{222}$Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a $^{222}$Rn activity concentration of 10 $mu$Bq/kg in 3.2 t of xenon. The knowledge of the distribution of the $^{222}$Rn sources allowed us to selectively eliminate critical components in the course of the experiment. The predictions from the emanation measurements were compared to data of the $^{222}$Rn activity concentration in XENON1T. The final $^{222}$Rn activity concentration of (4.5 $pm$ 0.1) $mu$Bq/kg in the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment.
112 - Y. P. Zhang , J. C. Liu , C. Guo 2017
The radioactive noble gas $^{222}$Rn, which can be dissolved in water, is an important background source for JUNO. In this paper, based on the water system of JUNO prototype, two kinds of high sensitivity radon detectors have been proposed and develo ped. The sensitivity of Si-PIN Rn detector, which uses a Si-PIN photodiode to detect the $alpha$ from $^{214}$Po decay, is $sim$9.0~mBq/m$^3$. The sensitivity of LS Rn detector, which uses liquid scintillator to detect the coincident signals of $beta$ from $^{214}$Bi decay and $alpha$ from $^{214}$Po decay, is $sim$64.0~mBq/m$^3$. Both of the two kinds of Rn detector have the potential to be developed as an online Rn concentration monitoring equipment for JUNO veto detector.
We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column is integrated into the gas purification loop of the XENON100 detector for online radon removal. This e nabled us to significantly reduce the constant $^{222}$Rn background originating from radon emanation. After inserting an auxiliary $^{222}$Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the $^{222}$Rn activity concentration inside the XENON100 detector.
The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register alpha-particles from the $^{222}$Rn and its daughters decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV alpha-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.
A reliable and consistently reproducible technique to fabricate $^{222}$Rn-loaded radioactive sources ($sim$0.5-1 kBq just after fabrication) based on liquid scintillator (LS), with negligible amounts of LS quencher contaminants, was implemented. Thi s work demonstrates the process that will be used during the Borexino detectors upcoming calibration campaign, with one or several $sim$100 Bq such sources will be deployed at different positions in its fiducial volume, currently showing unprecedented levels of radiopurity. These sources need to fulfill stringent requirements of $^{222}$Rn activity, transparency to the radiations of interest and complete removability from the detector to ensure their impact on Borexinos radiopurity is negligible. Moreover, the need for a clean, undistorted spectral signal for the calibrations imposes a tight requirement to minimize quenching agents (quenchers) to null or extremely low levels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا