ﻻ يوجد ملخص باللغة العربية
A reliable and consistently reproducible technique to fabricate $^{222}$Rn-loaded radioactive sources ($sim$0.5-1 kBq just after fabrication) based on liquid scintillator (LS), with negligible amounts of LS quencher contaminants, was implemented. This work demonstrates the process that will be used during the Borexino detectors upcoming calibration campaign, with one or several $sim$100 Bq such sources will be deployed at different positions in its fiducial volume, currently showing unprecedented levels of radiopurity. These sources need to fulfill stringent requirements of $^{222}$Rn activity, transparency to the radiations of interest and complete removability from the detector to ensure their impact on Borexinos radiopurity is negligible. Moreover, the need for a clean, undistorted spectral signal for the calibrations imposes a tight requirement to minimize quenching agents (quenchers) to null or extremely low levels.
The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces
The radioactive noble gas $^{222}$Rn, which can be dissolved in water, is an important background source for JUNO. In this paper, based on the water system of JUNO prototype, two kinds of high sensitivity radon detectors have been proposed and develo
Gamma sources are routinely used to calibrate the energy scale and resolution of liquid scintillator detectors. However, non-scintillating material surrounding the source introduces energy losses, which may bias the determination of the centroid and
A liquid scintillator (LS) is developed for the Taishan Antineutrino Observatory (TAO), a ton-level neutrino detector to measure the reactor antineutrino spectrum with sub-percent energy resolution by adopting Silicon Photomultipliers (SiPMs) as phot
This paper describes the design and performance of a 50 liter, two-segment $^{6}$Li-loaded liquid scintillator detector that was designed and operated as prototype for the PROSPECT (Precision Reactor Oscillation and Spectrum) Experiment. The two-segm