ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxial stabilization of ultra thin films of high entropy perovskite

106   0   0.0 ( 0 )
 نشر من قبل Srimanta Middey
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High entropy oxides (HEOs) are a class of materials, containing equimolar portions of five or more transition metal and/or rare-earth elements. We report here about the layer-by-layer growth of HEO [(La$_{0.2}$Pr$_{0.2}$Nd$_{0.2}$Sm$_{0.2}$Eu$_{0.2}$)NiO$_3$] thin films on NdGaO$_3$ substrates by pulsed laser deposition. The combined characterizations with in-situ reflection high energy electron diffraction, atomic force microscopy, and X-ray diffraction affirm the single crystalline nature of the film with smooth surface morphology. The desired +3 oxidation of Ni has been confirmed by an element sensitive X-ray absorption spectroscopy measurement. Temperature dependent electrical transport measurements revealed a first order metal-insulator transition with the transition temperature very similar to the undoped NdNiO$_3$. Since both of these systems have a comparable tolerance factor, this work demonstrates that the electronic behaviors of $A$-site disordered perovskite-HEOs are primarily controlled by the average tolerance factor.



قيم البحث

اقرأ أيضاً

Ruddlesden-popper type Srn+1IrnO3n+1 compound is a major focus of condensed matter physics where the subtle balance between electron-electron correlation, spin-orbit interaction and crystal field effect brings a host of emergent phenomena. While it i s understandable that a canted antiferromagnetic (AFM) insulating state with an easy-plane anisotropy is developed in Sr2IrO4 as the 2D limit of the series, it is intriguing that bilayer Sr3Ir2O7, with slightly higher effective dimensionality, stabilizes c-axis collinear antiferromagnetism. This also renders Sr3Ir2O7 as a unique playground to study exotic physics near a critical spin transition point. However, the epitaxial growth of the Sr3Ir2O7 is still a challenging task because of the narrow growth window. In our research, we have studied the thermodynamic process during synthesis of Sr3Ir2O7 thin films. We successfully expanded the synthesis window by mapping out the relation between the thin film sample crystal structure and gas pressure. Our work thus provides a more accessible avenue to stabilize metastable materials.
Frustrated rare-earth pyrochlore titanates, Yb$_2$Ti$_2$O$_7$, and Tb$_2$Ti$_2$O$_7$ have been proposed as promising candidates to realize quantum spin ice (QSI). Multiple exotic quantum phases, including Coulombic ferromagnet, quantum valence-bond s olid, and quadrupolar ordering, have been predicted to emerge in the QSI state upon application of a (111)-oriented external magnetic field. Here, we report on the primal successful layer-by-layer growth of ultra-thin films of frustrated quantum pyrochlores, R$_2$Ti$_2$O$_7$ (R = Er, Yb, and Tb), along the (111) direction. We confirm their high crystallinity and proper chemical composition by a combination of methods, including in-situ RHEED, x-ray diffraction, reciprocal space mapping, and x-ray photoelectron spectroscopy. The availability of large area (111)-oriented QSI structures with planar geometry offers a new complementary to the bulk platform to explore strain and magnetic field dependent properties in the quasi-2D limit.
Frustrated magnets can host numerous exotic many-body quantum and topological phenomena. GeNi$_2$O$_4$ is a three dimensional $S=1$ frustrated magnet with an unusual two-stage transition to the two-dimensional antiferromagnetic ground state, while Ge Cu$_2$O$_4$ is a high-pressure phase with a strongly tetragonally elongated spinel structure and magnetic lattice formed by $S=1/2$ CuO$_2$ linear chains with frustrated exchange interactions and exotic magnetic behavior. Here we report on the first thin-film epitaxial stabilization of these two compounds. Developed growth mode, surface morphology, crystal structure and copper valence state were characterized by in-situ reflection high-energy electron diffraction, atomic force microscopy, X-ray reflectivity, X-ray diffraction, X-ray photoelectron spectroscopy and resonant X-ray absorption spectroscopy. Our results pave an alternative route to the comprehensive investigation of the puzzling magnetic properties of these compounds and exploration of novel emergent features driven by strain.
Strong spin-orbit coupled 5d transition metal based ABO3 oxides, especially iridates, allow tuning parameters in the phase diagram and may demonstrate important functionalities, for example, by means of strain effects and symmetry-breaking, because o f the interplay between the Coulomb interactions and strong spin-orbit coupling. Here, we have epitaxially stabilized high quality thin films of perovskite (Pv) CaIrO3. Film on the best lattice-matched substrate shows semi-metal-like characteristics. Intriguingly, imposing tensile or compressive strain on the film by altering the underlying lattice-mismatched substrates still maintains semi-metallicity with minute modification of the effective correlation as tensile (compressive) strain results in tiny increases (decreases) of the electronic bandwidth. In addition, magnetoresistance remains positive with a quadratic field dependence. This persistent semi-metal-like nature of Pv-CaIrO3 thin films with minute changes in the effective correlation by strain may provide new wisdom into strong spin-orbit coupled 5d based oxide physics.
Chalcogenide perovskites have emerged as a new class of electronic materials, but fundamental properties and applications of chalcogenide perovskites remain limited by the lack of high quality epitaxial thin films. We report epitaxial thin film growt h of BaZrS3, a prototypical chalcogenide, by pulsed laser deposition. X-ray diffraction studies show that the films are strongly textured out of plane and have a clear in-plane epitaxial relationship with the substrate. Electron microscopy studies confirm the presence of epitaxy for the first few layers of the film at the interface, even though away from the interface the films are polycrystalline with a large number of extended defects suggesting the potential for further improvement in growth. X-Ray reflectivity and atomic force microscopy show smooth film surfaces and interfaces between the substrate and the film. The films show strong light absorption near the band edge and photoluminescence in the visible region. The photodetector devices show fast and efficient photo response with the highest ON/OFF ratio reported for BaZrS3 films thus far. Our study opens up opportunities to realize epitaxial thin films, heterostructures, and superlattices of chalcogenide perovskites to probe fundamental physical phenomena and the resultant electronic and photonic device technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا