ﻻ يوجد ملخص باللغة العربية
High entropy oxides (HEOs) are a class of materials, containing equimolar portions of five or more transition metal and/or rare-earth elements. We report here about the layer-by-layer growth of HEO [(La$_{0.2}$Pr$_{0.2}$Nd$_{0.2}$Sm$_{0.2}$Eu$_{0.2}$)NiO$_3$] thin films on NdGaO$_3$ substrates by pulsed laser deposition. The combined characterizations with in-situ reflection high energy electron diffraction, atomic force microscopy, and X-ray diffraction affirm the single crystalline nature of the film with smooth surface morphology. The desired +3 oxidation of Ni has been confirmed by an element sensitive X-ray absorption spectroscopy measurement. Temperature dependent electrical transport measurements revealed a first order metal-insulator transition with the transition temperature very similar to the undoped NdNiO$_3$. Since both of these systems have a comparable tolerance factor, this work demonstrates that the electronic behaviors of $A$-site disordered perovskite-HEOs are primarily controlled by the average tolerance factor.
Ruddlesden-popper type Srn+1IrnO3n+1 compound is a major focus of condensed matter physics where the subtle balance between electron-electron correlation, spin-orbit interaction and crystal field effect brings a host of emergent phenomena. While it i
Frustrated rare-earth pyrochlore titanates, Yb$_2$Ti$_2$O$_7$, and Tb$_2$Ti$_2$O$_7$ have been proposed as promising candidates to realize quantum spin ice (QSI). Multiple exotic quantum phases, including Coulombic ferromagnet, quantum valence-bond s
Frustrated magnets can host numerous exotic many-body quantum and topological phenomena. GeNi$_2$O$_4$ is a three dimensional $S=1$ frustrated magnet with an unusual two-stage transition to the two-dimensional antiferromagnetic ground state, while Ge
Strong spin-orbit coupled 5d transition metal based ABO3 oxides, especially iridates, allow tuning parameters in the phase diagram and may demonstrate important functionalities, for example, by means of strain effects and symmetry-breaking, because o
Chalcogenide perovskites have emerged as a new class of electronic materials, but fundamental properties and applications of chalcogenide perovskites remain limited by the lack of high quality epitaxial thin films. We report epitaxial thin film growt