ﻻ يوجد ملخص باللغة العربية
Frustrated magnets can host numerous exotic many-body quantum and topological phenomena. GeNi$_2$O$_4$ is a three dimensional $S=1$ frustrated magnet with an unusual two-stage transition to the two-dimensional antiferromagnetic ground state, while GeCu$_2$O$_4$ is a high-pressure phase with a strongly tetragonally elongated spinel structure and magnetic lattice formed by $S=1/2$ CuO$_2$ linear chains with frustrated exchange interactions and exotic magnetic behavior. Here we report on the first thin-film epitaxial stabilization of these two compounds. Developed growth mode, surface morphology, crystal structure and copper valence state were characterized by in-situ reflection high-energy electron diffraction, atomic force microscopy, X-ray reflectivity, X-ray diffraction, X-ray photoelectron spectroscopy and resonant X-ray absorption spectroscopy. Our results pave an alternative route to the comprehensive investigation of the puzzling magnetic properties of these compounds and exploration of novel emergent features driven by strain.
Frustrated rare-earth pyrochlore titanates, Yb$_2$Ti$_2$O$_7$, and Tb$_2$Ti$_2$O$_7$ have been proposed as promising candidates to realize quantum spin ice (QSI). Multiple exotic quantum phases, including Coulombic ferromagnet, quantum valence-bond s
Ruddlesden-popper type Srn+1IrnO3n+1 compound is a major focus of condensed matter physics where the subtle balance between electron-electron correlation, spin-orbit interaction and crystal field effect brings a host of emergent phenomena. While it i
High entropy oxides (HEOs) are a class of materials, containing equimolar portions of five or more transition metal and/or rare-earth elements. We report here about the layer-by-layer growth of HEO [(La$_{0.2}$Pr$_{0.2}$Nd$_{0.2}$Sm$_{0.2}$Eu$_{0.2}$
We report on the synthesis of ultrathin films of highly distorted EuNiO3 (ENO) grown by interrupted pulse laser epitaxy on YAlO3 (YAO) substrates. Through mapping the phase space of nickelate thin film epitaxy, the optimal growth temperatures were fo
We analyzed the magnetic susceptibilities of several Cr spinels using two recent models for the geometrically frustrated pyrochlore lattice, the Quantum Tetrahedral Mean Field model and a Generalized Constant Coupling model. Both models can describe