ترغب بنشر مسار تعليمي؟ اضغط هنا

Hate Speech Detection on Vietnamese Social Media Text using the Bi-GRU-LSTM-CNN Model

73   0   0.0 ( 0 )
 نشر من قبل Kiet Nguyen Van
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, Hate Speech Detection has become one of the interesting fields in natural language processing or computational linguistics. In this paper, we present the description of our system to solve this problem at the VLSP shared task 2019: Hate Speech Detection on Social Networks with the corpus which contains 20,345 human-labeled comments/posts for training and 5,086 for public-testing. We implement a deep learning method based on the Bi-GRU-LSTM-CNN classifier into this task. Our result in this task is 70.576% of F1-score, ranking the 5th of performance on public-test set.



قيم البحث

اقرأ أيضاً

Emotion recognition or emotion prediction is a higher approach or a special case of sentiment analysis. In this task, the result is not produced in terms of either polarity: positive or negative or in the form of rating (from 1 to 5) but of a more de tailed level of analysis in which the results are depicted in more expressions like sadness, enjoyment, anger, disgust, fear, and surprise. Emotion recognition plays a critical role in measuring the brand value of a product by recognizing specific emotions of customers comments. In this study, we have achieved two targets. First and foremost, we built a standard Vietnamese Social Media Emotion Corpus (UIT-VSMEC) with exactly 6,927 emotion-annotated sentences, contributing to emotion recognition research in Vietnamese which is a low-resource language in natural language processing (NLP). Secondly, we assessed and measured machine learning and deep neural network models on our UIT-VSMEC corpus. As a result, the CNN model achieved the highest performance with the weighted F1-score of 59.74%. Our corpus is available at our research website.
Most hate speech detection research focuses on a single language, generally English, which limits their generalisability to other languages. In this paper we investigate the cross-lingual hate speech detection task, tackling the problem by adapting t he hate speech resources from one language to another. We propose a cross-lingual capsule network learning model coupled with extra domain-specific lexical semantics for hate speech (CCNL-Ex). Our model achieves state-of-the-art performance on benchmark datasets from AMI@Evalita2018 and AMI@Ibereval2018 involving three languages: English, Spanish and Italian, outperforming state-of-the-art baselines on all six language pairs.
Islamophobic hate speech on social media inflicts considerable harm on both targeted individuals and wider society, and also risks reputational damage for the host platforms. Accordingly, there is a pressing need for robust tools to detect and classi fy Islamophobic hate speech at scale. Previous research has largely approached the detection of Islamophobic hate speech on social media as a binary task. However, the varied nature of Islamophobia means that this is often inappropriate for both theoretically-informed social science and effectively monitoring social media. Drawing on in-depth conceptual work we build a multi-class classifier which distinguishes between non-Islamophobic, weak Islamophobic and strong Islamophobic content. Accuracy is 77.6% and balanced accuracy is 83%. We apply the classifier to a dataset of 109,488 tweets produced by far right Twitter accounts during 2017. Whilst most tweets are not Islamophobic, weak Islamophobia is considerably more prevalent (36,963 tweets) than strong (14,895 tweets). Our main input feature is a gloVe word embeddings model trained on a newly collected corpus of 140 million tweets. It outperforms a generic word embeddings model by 5.9 percentage points, demonstrating the importan4ce of context. Unexpectedly, we also find that a one-against-one multi class SVM outperforms a deep learning algorithm.
Hate speech and profanity detection suffer from data sparsity, especially for languages other than English, due to the subjective nature of the tasks and the resulting annotation incompatibility of existing corpora. In this study, we identify profane subspaces in word and sentence representations and explore their generalization capability on a variety of similar and distant target tasks in a zero-shot setting. This is done monolingually (German) and cross-lingually to closely-related (English), distantly-related (French) and non-related (Arabic) tasks. We observe that, on both similar and distant target tasks and across all languages, the subspace-based representations transfer more effectively than standard BERT representations in the zero-shot setting, with improvements between F1 +10.9 and F1 +42.9 over the baselines across all tested monolingual and cross-lingual scenarios.
Online hate speech is an important issue that breaks the cohesiveness of online social communities and even raises public safety concerns in our societies. Motivated by this rising issue, researchers have developed many traditional machine learning a nd deep learning methods to detect hate speech in online social platforms automatically. However, most of these methods have only considered single type textual feature, e.g., term frequency, or using word embeddings. Such approaches neglect the other rich textual information that could be utilized to improve hate speech detection. In this paper, we propose DeepHate, a novel deep learning model that combines multi-faceted text representations such as word embeddings, sentiments, and topical information, to detect hate speech in online social platforms. We conduct extensive experiments and evaluate DeepHate on three large publicly available real-world datasets. Our experiment results show that DeepHate outperforms the state-of-the-art baselines on the hate speech detection task. We also perform case studies to provide insights into the salient features that best aid in detecting hate speech in online social platforms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا