ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic Ising Models with Self-interaction: Sequential and Parallel Updating

96   0   0.0 ( 0 )
 نشر من قبل Jon Machta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Kinetic Ising models on the square lattice with both nearest-neighbor interactions and self-interaction are studied for the cases of random sequential updating and parallel updating. The equilibrium phase diagrams and critical dynamics are studied using Monte Carlo simulations and analytic approximations. The Hamiltonians appearing in the Gibbs distribution describing the equilibrium properties differs for sequential and parallel updating but in both cases feature multispin and non-nearest-neighbor couplings. For parallel updating the system is a probabilistic cellular automaton and the equilibrium distribution satisfies detailed balance with respect to the dynamics [E. N. M. Cirillo, P. Y. Louis, W. M. Ruszel and C. Spitoni, Chaos, Solitons and Fractals, 64:36(2014)]. In the limit of weak self-interaction for parallel dynamics, odd and even sublattices are nearly decoupled and checkerboard patterns are present in the critical and low temperature regimes, leading to singular behavior in the shape of the critical line. For sequential updating the equilibrium Gibbs distribution satisfies global balance but not detailed balance and the Hamiltonian is obtained perturbatively in the limit of weak nearest-neighbor dynamical interactions. In the limit of strong self-interaction the equilibrium properties for both parallel and sequential updating are described by a nearest-neighbor Hamiltonian with twice the interaction strength of the dynamical model.



قيم البحث

اقرأ أيضاً

We study persistence in one-dimensional ferromagnetic and anti-ferromagnetic nearest-neighbor Ising models with parallel dynamics. The probability P(t) that a given spin has not flipped up to time t, when the system evolves from an initial random con figuration, decays as P(t) sim 1/t^theta_p with theta_p simeq 0.75 numerically. A mapping to the dynamics of two decoupled A+A to 0 models yields theta_p = 3/4 exactly. A finite size scaling analysis clarifies the nature of dynamical scaling in the distribution of persistent sites obtained under this dynamics.
In order to investigate the effects of connectivity and proximity in the specific heat, a special class of exactly solvable planar layered Ising models has been studied in the thermodynamic limit. The Ising models consist of repeated uniform horizont al strips of width $m$ connected by sequences of vertical strings of length $n$ mutually separated by distance $N$, with $N=1,2$ and $3$. We find that the critical temperature $T_c(N,m,n)$, arising from the collective effects, decreases as $n$ and $N$ increase, and increases as $m$ increases, as it should be. The amplitude $A(N,m,n)$ of the logarithmic divergence at the bulk critical temperature $T_c(N,m,n)$ becomes smaller as $n$ and $m$ increase. A rounded peak, with size of order $ln m$ and signifying the one-dimensional behavior of strips of finite width $m$, appears when $n$ is large enough. The appearance of these rounded peaks does not depend on $m$ as much, but depends rather more on $N$ and $n$, which is rather perplexing. Moreover, for fixed $m$ and $n$, the specific heats are not much different for different $N$. This is a most surprising result. For $N=1$, the spin-spin correlation in the center row of each strip can be written as a Toeplitz determinant with a generating function which is much more complicated than in Onsagers Ising model. The spontaneous magnetization in that row can be calculated numerically and the spin-spin correlation is shown to have two-dimensional Ising behavior.
The three-state Ising neural network with synchronous updating and variable dilution is discussed starting from the appropriate Hamiltonians. The thermodynamic and retrieval properties are examined using replica mean-field theory. Capacity-temperatur e phase diagrams are derived for several values of the pattern activity and different gradations of dilution, and the information content is calculated. The results are compared with those for sequential updating. The effect of self-coupling is established. Also the dynamics is studied using the generating function technique for both synchronous and sequential updating. Typical flow diagrams for the overlap order parameter are presented. The differences with the signal-to-noise approach are outlined.
69 - Kyungwha Park 2003
We study low-temperature nucleation in kinetic Ising models by analytical and simulational methods, confirming the general result for the average metastable lifetime, <tau> = A*exp(beta*Gamma) (beta = 1/kT) [E. Jordao Neves and R.H. Schonmann, Commun . Math. Phys. 137, 209 (1991)]. Contrary to common belief, we find that both A and Gamma depend significantly on the stochastic dynamic. In particular, for a ``soft dynamic, in which the effects of the interactions and the applied field factorize in the transition rates, Gamma does NOT simply equal the energy barrier against nucleation, as it does for the standard Glauber dynamic, which does not have this factorization property.
122 - F. A. Bagamery 2005
We consider the Ising model on the square lattice with biaxially correlated random ferromagnetic couplings, the critical point of which is fixed by self-duality. The disorder represents a relevant perturbation according to the extended Harris criteri on. Critical properties of the system are studied by large scale Monte Carlo simulations. The correlation length critical exponent, u=2.005(5), corresponds to that expected in a system with isotropic correlated long-range disorder, whereas the scaling dimension of the magnetization density, x_m=0.1294(7), is somewhat larger than in the pure system. Conformal properties of the magnetization and energy density profiles are also examined numerically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا