ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional Ising model with self-dual biaxially correlated disorder

123   0   0.0 ( 0 )
 نشر من قبل Loic Turban
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. A. Bagamery




اسأل ChatGPT حول البحث

We consider the Ising model on the square lattice with biaxially correlated random ferromagnetic couplings, the critical point of which is fixed by self-duality. The disorder represents a relevant perturbation according to the extended Harris criterion. Critical properties of the system are studied by large scale Monte Carlo simulations. The correlation length critical exponent, u=2.005(5), corresponds to that expected in a system with isotropic correlated long-range disorder, whereas the scaling dimension of the magnetization density, x_m=0.1294(7), is somewhat larger than in the pure system. Conformal properties of the magnetization and energy density profiles are also examined numerically.



قيم البحث

اقرأ أيضاً

Using high-precision Monte-Carlo simulations based on a parallel version of the Wang-Landau algorithm and finite-size scaling techniques we study the effect of quenched disorder in the crystal-field coupling of the Blume-Capel model on the square lat tice. We mainly focus on the part of the phase diagram where the pure model undergoes a continuous transition, known to fall into the universality class of the pure Ising ferromagnet. A dedicated scaling analysis reveals concrete evidence in favor of the strong universality hypothesis with the presence of additional logarithmic corrections in the scaling of the specific heat. Our results are in agreement with an early real-space renormalization-group study of the model as well as a very recent numerical work where quenched randomness was introduced in the energy exchange coupling. Finally, by properly fine tuning the control parameters of the randomness distribution we also qualitatively investigate the part of the phase diagram where the pure model undergoes a first-order phase transition. For this region, preliminary evidence indicate a smoothening of the transition to second-order with the presence of strong scaling corrections.
129 - M. Pleimling 2004
In the two-dimensional Ising model weak random surface field is predicted to be a marginally irrelevant perturbation at the critical point. We study this question by extensive Monte Carlo simulations for various strength of disorder. The calculated e ffective (temperature or size dependent) critical exponents fit with the field-theoretical results and can be interpreted in terms of the predicted logarithmic corrections to the pure systems critical behaviour.
88 - D. J. Priour Jr , 2000
We study a one-dimensional chain of corner-sharing triangles with antiferromagnetic Ising interactions along its bonds. Classically, this system is highly frustrated with an extensive entropy at T = 0 and exponentially decaying spin correlations. We show that the introduction of a quantum dynmamics via a transverse magnetic field removes the entropy and opens a gap, but leaves the ground state disordered at all values of the transverse field, thereby providing an analog of the disorder by disorder scenario first proposed by Anderson and Fazekas in their search for resonating valence bond states. Our conclusion relies on exact diagonalization calculations as well as on the analysis of a 14th order series expansion about the large transverse field limit. This test suggests that the series method could be used to search for other instances of quantum disordered states in frustrated transverse field magnets in higher dimensions.
166 - X. P. Qin , B. Zheng , N. J. Zhou 2012
With Monte Carlo methods, we investigate the universality class of the depinning transition in the two-dimensional Ising model with quenched random fields. Based on the short-time dynamic approach, we accurately determine the depinning transition fie ld and both static and dynamic critical exponents. The critical exponents vary significantly with the form and strength of the random fields, but exhibit independence on the updating schemes of the Monte Carlo algorithm. From the roughness exponents $zeta, zeta_{loc}$ and $zeta_s$, one may judge that the depinning transition of the random-field Ising model belongs to the new dynamic universality class with $zeta eq zeta_{loc} eq zeta_s$ and $zeta_{loc} eq 1$. The crossover from the second-order phase transition to the first-order one is observed for the uniform distribution of the random fields, but it is not present for the Gaussian distribution.
The statistics of critical spin-spin correlation functions in Ising systems with non-frustrated disorder are investigated on a strip geometry, via numerical transfer-matrix techniques. Conformal invariance concepts are used, in order to test for loga rithmic corrections to pure power-law decay against distance. Fits of our data to conformal-invariance expressions, specific to logarithmic corrections to correlations on strips, give results with the correct sign, for the moments of order $n=0-4$ of the correlation-function distribution. We find an interval of disorder strength along which corrections to pure-system behavior can be decomposed into the product of a known $n$-dependent factor and an approximately $n$-independent one, in accordance with predictions. A phenomenological fitting procedure is proposed, which takes partial account of subdominant terms of correlation-function decay on strips. In the low-disorder limit, it gives results in fairly good agreement with theoretical predictions, provided that an additional assumption is made.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا