ﻻ يوجد ملخص باللغة العربية
A neural network solving Grad-Shafranov equation constrained with measured magnetic signals to reconstruct magnetic equilibria in real time is developed. Database created to optimize the neural networks free parameters contain off-line EFIT results as the output of the network from $1,118$ KSTAR experimental discharges of two different campaigns. Input data to the network constitute magnetic signals measured by a Rogowski coil (plasma current), magnetic pick-up coils (normal and tangential components of magnetic fields) and flux loops (poloidal magnetic fluxes). The developed neural networks fully reconstruct not only the poloidal flux function $psileft( R, Zright)$ but also the toroidal current density function $j_phileft( R, Zright)$ with the off-line EFIT quality. To preserve robustness of the networks against a few missing input data, an imputation scheme is utilized to eliminate the required additional training sets with large number of possible combinations of the missing inputs.
The structure of static MHD equilibria that admit continuous families of Euclidean symmetries is well understood. Such field configurations are governed by the classical Grad-Shafranov equation, which is a single elliptic PDE in two space dimensions.
This article completes and extends a recent study of the Grad-Shafranov (GS) reconstruction in toroidal geometry, as applied to a two and a half dimensional configurations in space plasmas with rotational symmetry. A further application to the benchm
In this paper, we present a physics-constrained deep neural network (PCDNN) method for parameter estimation in the zero-dimensional (0D) model of the vanadium redox flow battery (VRFB). In this approach, we use deep neural networks (DNNs) to approxim
Encoding domain knowledge into the prior over the high-dimensional weight space of a neural network is challenging but essential in applications with limited data and weak signals. Two types of domain knowledge are commonly available in scientific ap
Gaining insight into how deep convolutional neural network models perform image classification and how to explain their outputs have been a concern to computer vision researchers and decision makers. These deep models are often referred to as black b