ﻻ يوجد ملخص باللغة العربية
The deep learning-based visual tracking algorithms such as MDNet achieve high performance leveraging to the feature extraction ability of a deep neural network. However, the tracking efficiency of these trackers is not very high due to the slow feature extraction for each frame in a video. In this paper, we propose an effective tracking algorithm to alleviate the time-consuming problem. Specifically, we design a deep flow collaborative network, which executes the expensive feature network only on sparse keyframes and transfers the feature maps to other frames via optical flow. Moreover, we raise an effective adaptive keyframe scheduling mechanism to select the most appropriate keyframe. We evaluate the proposed approach on large-scale datasets: OTB2013 and OTB2015. The experiment results show that our algorithm achieves considerable speedup and high precision as well.
In this work, we propose a novel deep online correction (DOC) framework for monocular visual odometry. The whole pipeline has two stages: First, depth maps and initial poses are obtained from convolutional neural networks (CNNs) trained in self-super
Jointly exploiting multiple different yet complementary domain information has been proven to be an effective way to perform robust object tracking. This paper focuses on effectively representing and utilizing complementary features from the frame do
In this paper, we study a discriminatively trained deep convolutional network for the task of visual tracking. Our tracker utilizes both motion and appearance features that are extracted from a pre-trained dual stream deep convolution network. We sho
Most of the existing trackers usually rely on either a multi-scale searching scheme or pre-defined anchor boxes to accurately estimate the scale and aspect ratio of a target. Unfortunately, they typically call for tedious and heuristic configurations
Multi-person articulated pose tracking in unconstrained videos is an important while challenging problem. In this paper, going along the road of top-down approaches, we propose a decent and efficient pose tracker based on pose flows. First, we design