ﻻ يوجد ملخص باللغة العربية
Control of quantum coherence in many-body system is one of the key issues in modern condensed matter. Conventional wisdom is that lattice vibration is an innate source of decoherence, and amounts of research have been conducted to eliminate lattice effects. Challenging this wisdom, here we show that lattice vibration may not be a decoherence source but an impetus of a novel coherent quantum many-body state. We demonstrate the possibility by studying the transverse-field Ising model on a chain with renormalization group and density-matrix renormalization group method, and theoretically discover a stable $mathcal{N}=1$ supersymmetric quantum criticality with central charge $c=3/2$. Thus, we propose an Ising spin chain with strong spin-lattice coupling as a candidate to observe supersymmetry. Generic precursor conditions of novel quantum criticality are obtained by generalizing the Larkin-Pikin criterion of thermal transitions. Our work provides a new perspective that lattice vibration may be a knob for exotic quantum many-body states.
We study the triangular-lattice Ising model with dipolar interactions, inspired by its realisation in artificial arrays of nanomagnets. We show that a classical spin-liquid forms at intermediate temperatures, and that its behaviour can be tuned by te
In topological mechanics, the identification of a mechanical systems rigidity matrix with an electronic tight-binding model allows to infer topological properties of the mechanical system, such as the occurrence of `floppy boundary modes, from the as
We demonstrate a fast numerical method of theoretical studies of skyrmion lattice or spiral order in magnetic materials with Dzyaloshinsky-Moriya interaction. The method is based on the Fourier expansion of the magnetization combined with a minimizat
Supersymmetry, a symmetry between fermions and bosons, provides a promising extension of the standard model but is still lack of experimental evidence. Recently, the interest in supersymmetry arises in the condensed matter community owing to its pote
In numerical simulations, spontaneously broken symmetry is often detected by computing two-point correlation functions of the appropriate local order parameter. This approach, however, computes the square of the local order parameter, and so when it