ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite-Scale Emergence of 2+1D Supersymmetry at First-Order Quantum Phase Transition

82   0   0.0 ( 0 )
 نشر من قبل Jiabin Yu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Supersymmetry, a symmetry between fermions and bosons, provides a promising extension of the standard model but is still lack of experimental evidence. Recently, the interest in supersymmetry arises in the condensed matter community owing to its potential emergence at the continuous quantum phase transition. In this work, we demonstrate that 2+1D supersymmetry, relating massive Majorana and Ising fields, might emerge at the first-order quantum phase transition of the Ising magnetization by tuning a single parameter. Although the emergence of the SUSY is only allowed in a finite range of scales due to the existence of relevant masses, the scale range can be large when the masses before scaling are small. We show that the emergence of supersymmetry is accompanied by a topological phase transition for the Majorana field, where its non-zero mass changes the sign but keeps the magnitude. An experimental realization of this scenario is proposed using the surface state of a 3+1D time-reversal invariant topological superconductor with surface magnetic doping.


قيم البحث

اقرأ أيضاً

We study an Anderson impurity embedded in a d-wave superconductor carrying a supercurrent. The low-energy impurity behavior is investigated by using the numerical renormalization group method developed for arbitrary electronic bath spectra. The resul ts explicitly show that the local impurity state is completely screened upon the non-zero current intensity. The impurity quantum criticality is in accordance with the well-known Kosterlitz-Thouless transition.
We study the low energy spectrum of a correlated quantum dot embedded between the normal conducting and superconducting reservoirs and hybridized with the topological superconducting nanowire, hosting the Majorana end-modes. We investigate the leakin g Majorana quasiparticle and inspect its interplay with the proximity induced on-dot pairing and correlations. In particular, we focus on the subgap Kondo effect near the quantum phase transition/crossover from the spinfull (doublet) to the spinless (BCS-type singlet) configurations. Treating the correlations perturbatively and within the NRG approach we study its signatures observable in the Andreev (particle-to-hole conversion) tunneling spectroscopy. We find, that the leaking Majorana mode has a spin-selective influence on the subgap Kondo effect.
Using the framework of the density-matrix renormalization group (DMRG), we study a quantum dot coupled to a superconducting nanowire with strong Rashba spin-orbit coupling. Regarding the singlet-to-doublet 0-$pi$ transition that takes place when the Kondo effect is overcome by the superconducting gap, we show that the Rashba coupling modifies the critical values at which the transition occurs, favouring the doublet phase. In addition, using a generalized Haldanes formula for the Kondo temperature $T_K$, we show that it is lowered by the Rashba coupling. We benchmark our DMRG results comparing them with previous numerical renormalization group (NRG) results. The excellent agreement obtained opens the possibility of studying chains or clusters of impurities coupled to superconductors by the means of DMRG.
In the vicinity of a quantum critical point, quenched disorder can lead to a quantum Griffiths phase, accompanied by an exotic power-law scaling with a continuously varying dynamical exponent that diverges in the zero-temperature limit. Here, we inve stigate a nematic quantum critical point in the iron-based superconductor FeSe$_{0.89}$S$_{0.11}$ using applied hydrostatic pressure. We report an unusual crossing of the magnetoresistivity isotherms in the non-superconducting normal state which features a continuously varying dynamical exponent over a large temperature range. We interpret our results in terms of a quantum Griffiths phase caused by nematic islands that result from the local distribution of Se and S atoms. At low temperatures, the Griffiths phase is masked by the emergence of a Fermi liquid phase due to a strong nematoelastic coupling and a Lifshitz transition that changes the topology of the Fermi surface.
Control of quantum coherence in many-body system is one of the key issues in modern condensed matter. Conventional wisdom is that lattice vibration is an innate source of decoherence, and amounts of research have been conducted to eliminate lattice e ffects. Challenging this wisdom, here we show that lattice vibration may not be a decoherence source but an impetus of a novel coherent quantum many-body state. We demonstrate the possibility by studying the transverse-field Ising model on a chain with renormalization group and density-matrix renormalization group method, and theoretically discover a stable $mathcal{N}=1$ supersymmetric quantum criticality with central charge $c=3/2$. Thus, we propose an Ising spin chain with strong spin-lattice coupling as a candidate to observe supersymmetry. Generic precursor conditions of novel quantum criticality are obtained by generalizing the Larkin-Pikin criterion of thermal transitions. Our work provides a new perspective that lattice vibration may be a knob for exotic quantum many-body states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا