ترغب بنشر مسار تعليمي؟ اضغط هنا

The liquid argon detector and measurement of SiPM array at liquid argon temperature

130   0   0.0 ( 0 )
 نشر من قبل Cong Guo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Particle detectors based on liquid argon (LAr) have recently become recognized as an extremely attractive technology for the direct detection of dark matter as well as the measurement of coherent elastic neutrino-nucleus scattering (CE$ u$NS). The Chinese argon group at Institute of High Energy Physics has been studying the LAr detector technology and a LAr detector has been operating steadily. A program of using a dual phase LAr detector to measure the CE$ u$NS at Taishang Nuclear Power Plant has been proposed and the R&D work is ongoing. Considering the requirements of ultra-low radio-purity and high photon collection efficiency, SiPMs will be a good choice and will be used in the detector. In this proceeding, an introduction of the LAr detector and the measurement results of SiPM array at LAr temperature will be presented.

قيم البحث

اقرأ أيضاً

110 - L.Wang , M.Y.Guan , H.J.Qin 2021
Particle detectors based on liquid argon are now recognised as an attractive technology for dark matter direct detection and coherent elastic neutrino-nucleus scattering measurement. A program using a dual-phase liquid argon detector with a fiducial mass of 200~kg to detect coherent elastic neutrino-nucleus scattering at Taishan Nuclear Power Plant has been proposed. SiPMs will be used as the photon sensor because of their high radio-purity and high photon detection efficiency. S13370-6050CN SiPM, made by Hamamatsu, is a candidate for the detector. In this paper, the characterisation of S13370-6050CN SiPM, including the cross talk and after pulse probabilities at liquid argon temperature and the temperature dependence of break down voltage, dark counting rate and relative quantum efficiency were presented.
We report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. Our results, which are consistent with previous measurements in the region between 100 to 350 V/cm [1] , are systematically higher than the prediction of Atrazhev-Timoshkin[2], and represent the worlds best measurement in the region between 350 to 2000 V/cm. The quantum efficiency of the gold photocathode, the drift velocity and longitudinal diffusion coefficients in gas argon are also presented.
The China Dark Matter Experiment (CDEX) is a low background experiment at China Jinping Underground Laboratory (CJPL) designed to directly detect dark matter with a high-purity Germanium (HPGe) detector. In the second phase CDEX-10 with a 10 kg Germa nium array detector system, the liquid argon (LAr) anti-compton active shielding and cooling system is proposed. For purpose of studying the properties of LAr detector, a prototype with an active volume of 7 liters of liquid argon was built and operated. The photoelectron yields, as a critically important parameter for the prototype detector, have been measured to be 0.051-0.079 p.e./keV for 662 keV Gamma lines at different positions. The good agreement between the experimental and simulation results has provided a quite reasonable understanding and determination of the important parameters such as the Surviving Fraction of the Ar2 excimers, the absorption length for 128 nm photons in liquid argon, the reflectivity of Teflon and so on.
The model R5912-20MOD photomultiplier tube(PMT) is made for cryogenic application by Hamamatsu. In this paper, we report on the measurement of relative quantum efficiency (QE) of this model PMT at liquid argon(LAr) temperature. Furthermore, a special ly designed setup and relevant test method are introduced. The relative QE is measured in visible wavelengths with the PMT emerged in high purity nitrogen atmosphere. The results show that the change of QE at LAr temperature is within about 5% compared with room temperature around 420 nm. However, the QE increases about 10% in the shorter wavelength range and decreases significantly after 550 nm.
The ARAPUCA is a novel concept for liquid argon scintillation light detection which has been proposed for the photon detection system of the Deep Underground Neutrino Experiment. The test in liquid argon of one of the first ARAPUCA prototypes is pres ented in this work, where the working principle is experimentally demonstrated. The prototype has an acceptance window of 9 cm$^2$ and is read-out by a single SiPM with active area of 0.36 cm$^2$. Its global detection efficiency was estimated by exposing it to a $^{238}U$ $alpha$ source and to cosmic rays and was found to be 1.15% $pm$ 0.15%, in good agreement with the prediction of a detailed Monte Carlo simulation of the device. Several other ARAPUCA prototypes of bigger dimensions and read-out by arrays of SiPMs have been built and are actually under test. In particular 32 ARAPUCA cells have been installed inside the protoDUNE detector, which is being assembled at CERN and will be operated in the second half of 2018.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا