ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of Longitudinal Electron Diffusion in Liquid Argon

208   0   0.0 ( 0 )
 نشر من قبل Yichen Li
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. Our results, which are consistent with previous measurements in the region between 100 to 350 V/cm [1] , are systematically higher than the prediction of Atrazhev-Timoshkin[2], and represent the worlds best measurement in the region between 350 to 2000 V/cm. The quantum efficiency of the gold photocathode, the drift velocity and longitudinal diffusion coefficients in gas argon are also presented.

قيم البحث

اقرأ أيضاً

Particle detectors based on liquid argon (LAr) have recently become recognized as an extremely attractive technology for the direct detection of dark matter as well as the measurement of coherent elastic neutrino-nucleus scattering (CE$ u$NS). The Ch inese argon group at Institute of High Energy Physics has been studying the LAr detector technology and a LAr detector has been operating steadily. A program of using a dual phase LAr detector to measure the CE$ u$NS at Taishang Nuclear Power Plant has been proposed and the R&D work is ongoing. Considering the requirements of ultra-low radio-purity and high photon collection efficiency, SiPMs will be a good choice and will be used in the detector. In this proceeding, an introduction of the LAr detector and the measurement results of SiPM array at LAr temperature will be presented.
80 - M.Babicz , S. Bordoni , A. Fava 2020
The propagation velocity of scintillation light in liquid argon $v_{g}$ at $lambda sim 128$~nm wavelength, has been measured for the first time in a dedicated experimental setup at CERN. The obtained result $frac{1}{v_{g}} = 7.46 pm 0.08$~ns/m , is t hen used to derive the value of the refractive index (n) and the Rayleigh scattering length ($mathcal{L}$) for liquid argon in the VUV region. For $lambda = 128$~nm we found $n= 1.358 pm 0.003$ and $mathcal{L}= 99.1 pm 2.3$~cm. The measured values are of interest for a variety of experiments searching for rare events like neutrino and dark matter interactions. The derived quantities also represent key information for theoretical models describing the propagation of scintillation light in liquid argon.
152 - P. Abratenko , R. An , J. Anthony 2021
Accurate knowledge of electron transport properties is vital to understanding the information provided by liquid argon time projection chambers (LArTPCs). Ionization electron drift-lifetime, local electric field distortions caused by positive ion acc umulation, and electron diffusion can all significantly impact the measured signal waveforms. This paper presents a measurement of the effective longitudinal electron diffusion coefficient, $D_L$, in MicroBooNE at the nominal electric field strength of 273.9 V/cm. Historically, this measurement has been made in LArTPC prototype detectors. This represents the first measurement in a large-scale (85 tonne active volume) LArTPC operating in a neutrino beam. This is the largest dataset ever used for this measurement. Using a sample of $sim$70,000 through-going cosmic ray muon tracks tagged with MicroBooNEs cosmic ray tagger system, we measure $D_L = 3.74^{+0.28}_{-0.29}$ cm$^2$/s.
MicroBooNE is a near-surface liquid argon (LAr) time projection chamber (TPC) located at Fermilab. We measure the characterisation of muons originating from cosmic interactions in the atmosphere using both the charge collection and light readout dete ctors. The data is compared with the CORSIKA cosmic-ray simulation. Good agreement is found between the observation, simulation and previous results. Furthermore, the angular resolution of the reconstructed muons inside the TPC is studied in simulation.
84 - J.Paley , D. Gastler , E. Kearns 2014
Liquid Argon Time Projection Chambers (LArTPCs) are ideal detectors for precision neutrino physics. These detectors, when located deep underground, can also be used for measurements of proton decay, and astrophysical neutrinos. The technology must be completely developed, up to very large mass scales, and fully mastered to construct and operate these detectors for this physics program. As part of an integrated plan of developing these detectors, accurate measurements in LArTPC of known particle species in the relevant energy ranges are now deemed as necessary. The LArIAT program aims to directly achieve these goals by deploying LArTPC detectors in a dedicated calibration test beam line at Fermilab. The set of measurements envisaged here are significant for both the short-baseline (SBN) and long-baseline (LBN) neutrino oscillation programs in the US, starting with MicroBooNE in the near term and with the adjoint near and far liquid argon detectors in the Booster beam line at Fermilab envisioned in the mid-term, and moving towards deep underground physics such as with the long-baseline neutrino facility (LBNF) in the longer term.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا