ﻻ يوجد ملخص باللغة العربية
We consider heat transport in one-dimensional harmonic chains attached at its ends to Langevin heat baths. The harmonic chain has mass impurities where the separation $d$ between any two successive impurities is randomly distributed according to a power-law distribution $P(d)sim 1/d^{alpha+1}$, being $alpha>0$. In the regime where the first moment of the distribution is well defined ($1<alpha<2$) the thermal conductivity $kappa$ scales with the system size $N$ as $kappasim N^{(alpha-3)/alpha}$ for fixed boundary conditions, whereas for free boundary conditions $kappasim N^{(alpha-1)/alpha}$ if $Ngg1$. When $alpha=2$, the inverse localization length $lambda$ scales with the frequency $omega$ as $lambdasim omega^2 ln omega$ in the low frequency regime, due to the logarithmic correction, the size scaling law of the thermal conductivity acquires a non-closed form. When $alpha>2$, the thermal conductivity scales as in the uncorrelated disorder case. The situation $alpha<1$ is only analyzed numerically, where $lambda(omega)sim omega^{2-alpha}$ which leads to the following asymptotic thermal conductivity: $kappa sim N^{-(alpha+1)/(2-alpha)}$ for fixed boundary conditions and $kappa sim N^{(1-alpha)/(2-alpha)}$ for free boundary conditions.
We consider heat transport in one-dimensional harmonic chains with isotopic disorder, focussing our attention mainly on how disorder correlations affect heat conduction. Our approach reveals that long-range correlations can change the number of low-f
We address the general problem of heat conduction in one dimensional harmonic chain, with correlated isotopic disorder, attached at its ends to white noise or oscillator heat baths. When the low wavelength $mu$ behavior of the power spectrum $W$ (of
Structures with heavy-tailed distributions of disorder occur widely in nature. The evolution of such systems, as in foraging for food or the occurrence of earthquakes is generally analyzed in terms of an incoherent series of events. But the study of
We study transport properties of graphene with anisotropically distributed on-site impurities (adatoms) that are randomly placed on every third line drawn along carbon bonds. We show that stripe states characterized by strongly suppressed back-scatte
We consider the one-dimensional partially asymmetric exclusion process with random hopping rates, in which a fraction of particles (or sites) have a preferential jumping direction against the global drift. In this case the accumulated distance travel