ﻻ يوجد ملخص باللغة العربية
Obtaining channel covariance knowledge is of great importance in various Multiple-Input Multiple-Output MIMO communication applications, including channel estimation and covariance-based user grouping. In a massive MIMO system, covariance estimation proves to be challenging due to the large number of antennas ($Mgg 1$) employed in the base station and hence, a high signal dimension. In this case, the number of pilot transmissions $N$ becomes comparable to the number of antennas and standard estimators, such as the sample covariance, yield a poor estimate of the true covariance and are undesirable. In this paper, we propose a Maximum-Likelihood (ML) massive MIMO covariance estimator, based on a parametric representation of the channel angular spread function (ASF). The parametric representation emerges from super-resolving discrete ASF components via the well-known MUltiple SIgnal Classification (MUSIC) method plus approximating its continuous component using suitable limited-support density function. We maximize the likelihood function using a concave-convex procedure, which is initialized via a non-negative least-squares optimization problem. Our simulation results show that the proposed method outperforms the state of the art in various estimation quality metrics and for different sample size to signal dimension ($N/M$) ratios.
Terahertz (THz) communication is considered to be a promising technology for future 6G network. To overcome the severe attenuation and relieve the high power consumption, massive MIMO with hybrid precoding has been widely considered for THz communica
We consider a cell-free hybrid massive multiple-input multiple-output (MIMO) system with $K$ users and $M$ access points (APs), each with $N_a$ antennas and $N_r< N_a$ radio frequency (RF) chains. When $Kll M{N_a}$, efficient uplink channel estimatio
In order to reduce hardware complexity and power consumption, massive multiple-input multiple-output (MIMO) systems employ low-resolution analog-to-digital converters (ADCs) to acquire quantized measurements $boldsymbol y$. This poses new challenges
Terahertz (THz) communication is widely considered as a key enabler for future 6G wireless systems. However, THz links are subject to high propagation losses and inter-symbol interference due to the frequency selectivity of the channel. Massive multi
Channel estimation is one of the key issues in practical massive multiple-input multiple-output (MIMO) systems. Compared with conventional estimation algorithms, deep learning (DL) based ones have exhibited great potential in terms of performance and