ﻻ يوجد ملخص باللغة العربية
Micro/nanoscale single photon source is a building block of on-chip quantum information devices. Owing to possessing ultrasmall optical mode volume, plasmon structures can provide large Purcell enhancement, however scattering and absorption are two barriers to prevent them from being used in practice. To overcome these barriers, we propose the topological photonic structure containing resonant plasmon nanoantenna, where nanoantenna provides large Purcell enhancement while topological photonic crystal guides all scattering light into its edge state. Through the optical mode design, the rate of single photons emitted into the edge state reaches more than 104{gamma}0 simultaneously accompanied with an obvious reduction of absorption. This kind of nonscattering large Purcell enhancement will provide new sight for on-chip quantum light sources such as a single photon source and nanolaser.
Due to their ability to confine light, optical resonators are of great importance to science and technology, yet their performances are often limited by out-of-plane scattering losses from inevitable fabrication imperfections. Here, we theoretically
We show how the central equality of scattering theory, the definition of the $mathbb{T}$ operator, can be used to generate hierarchies of mean-field constraints that act as natural complements to the standard electromagnetic design problem of optimiz
Scattering processes in an optical microcavity are investigated for the case of silicon nanocrystals embedded in an ultra-high Q toroid microcavity. Using a novel measurement technique based on the observable mode-splitting, we demonstrate that light
Integration of solid state quantum emitters into nanophotonic circuits is a critical step towards fully on-chip quantum photonic based technologies. Among potential materials platforms, quantum emitters in hexagonal boron nitride have emerged over th
Optical skyrmions have recently been constructed by tailoring electric or spin field distributions through the interference of multiple surface plasmon polaritons, offering promising features for advanced information processing, transport and storage