ﻻ يوجد ملخص باللغة العربية
We show how the central equality of scattering theory, the definition of the $mathbb{T}$ operator, can be used to generate hierarchies of mean-field constraints that act as natural complements to the standard electromagnetic design problem of optimizing some objective with respect to structural degrees of freedom. Proof-of-concept application to the problem of maximizing radiative Purcell enhancement for a dipolar current source in the vicinity of a structured medium, an effect central to many sensing and quantum technologies, yields performance bounds that are frequently more than an order of magnitude tighter than all current frameworks, highlighting the irreality of these models in the presence of differing domain and field-localization length scales. Closely related to domain decomposition and multi-grid methods, similar constructions are possible in any branch of wave physics, paving the way for systematic evaluations of fundamental limits beyond electromagnetism.
We present a method based on the scattering $mathbb{T}$ operator, and conservation of net real and reactive power, to provide physical bounds on any electromagnetic design objective that can be framed as a net radiative emission, scattering or absorp
We extend the work of Hellerman (arxiv:0902.2790) to derive an upper bound on the conformal dimension $Delta_2$ of the next-to-lowest nontrival primary operator in unitary two-dimensional conformal field theories without chiral primary operators. The
The ability to design the scattering properties of electromagnetic structures is of fundamental interest in optical science and engineering. While there has been great practical success applying local optimization methods to electromagnetic device de
A family of rigorous upper bounds on the growth rate of local gyrokinetic instabilities in magnetized plasmas is derived from the evolution equation for the Helmholtz free energy. These bounds hold for both electrostatic and electromagnetic instabili
Alternative theories to quantum mechanics motivate important fundamental tests of our understanding and descriptions of the smallest physical systems. Here, using spontaneous parametric downconversion as a heralded single-photon source, we place expe