ترغب بنشر مسار تعليمي؟ اضغط هنا

Assessing Standard and Kinetic Energy Conserving Discontinuous Galerkin Formulations for Marginally Resolved Navier-Stokes Flows

63   0   0.0 ( 0 )
 نشر من قبل Gustaaf Jacobs
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The robustness and accuracy of marginally resolved discontinuous Galerkin spectral element computations are evaluated for the standard formulation and a kinetic energy conserving split form on complex flow problems of physical and engineering interest, including the flow over a square cylinder, an airfoil and a plane jet. It is shown that the kinetic energy conserving formulation is significantly more robust than the standard scheme for under-resolved simulations. A disadvantage of the split form is the restriction to Gauss-Lobatto nodes with the inherent underintegration and lower accuracy as compared to Gauss quadrature used with the standard scheme. While the results support the higher accuracy of the standard Gauss form, lower numerical robustness and spurious oscillations are evident in some cases, giving the advantage to the kinetic energy conserving scheme for marginally resolved numerical simulations.



قيم البحث

اقرأ أيضاً

In the spirit of making high-order discontinuous Galerkin (DG) methods more competitive, researchers have developed the hybridized DG methods, a class of discontinuous Galerkin methods that generalizes the Hybridizable DG (HDG), the Embedded DG (EDG) and the Interior Embedded DG (IEDG) methods. These methods are amenable to hybridization (static condensation) and thus to more computationally efficient implementations. Like other high-order DG methods, however, they may suffer from numerical stability issues in under-resolved fluid flow simulations. In this spirit, we introduce the hybridized DG methods for the compressible Euler and Navier-Stokes equations in entropy variables. Under a suitable choice of the stabilization matrix, the scheme can be shown to be entropy stable and satisfy the Second Law of Thermodynamics in an integral sense. The performance and robustness of the proposed family of schemes are illustrated through a series of steady and unsteady flow problems in subsonic, transonic, and supersonic regimes. The hybridized DG methods in entropy variables show the optimal accuracy order given by the polynomial approximation space, and are significantly superior to their counterparts in conservation variables in terms of stability and robustness, particularly for under-resolved and shock flows.
Structure-preserving discretization of the Rosenbluth-Fokker-Planck equation is still an open question especially for unlike-particle collision. In this paper, a mass-energy-conserving isotropic Rosenbluth-Fokker-Planck scheme is introduced. The stru cture related to the energy conservation is skew-symmetry in mathematical sense, and the action-reaction law in physical sense. A thermal relaxation term is obtained by using integration-by-parts on a volume integral of the energy moment equation, so the discontinuous Galerkin method is selected to preserve the skew-symmetry. The discontinuous Galerkin method enables ones to introduce the nonlinear upwind flux without violating the conservation laws. Some experiments show that the conservative scheme maintains the mass-energy-conservation only with round-off errors, and analytic equilibria are reproduced only with truncation errors of its formal accuracy.
In this paper, a high order quasi-conservative discontinuous Galerkin (DG) method using the non-oscillatory kinetic flux is proposed for the 5-equation model of compressible multi-component flows with Mie-Gruneisen equation of state. The method mainl y consists of three steps: firstly, the DG method with the non-oscillatory kinetic flux is used to solve the conservative equations of the model; secondly, inspired by Abgralls idea, we derive a DG scheme for the volume fraction equation which can avoid the unphysical oscillations near the material interfaces; finally, a multi-resolution WENO limiter and a maximum-principle-satisfying limiter are employed to ensure oscillation-free near the discontinuities, and preserve the physical bounds for the volume fraction, respectively. Numerical tests show that the method can achieve high order for smooth solutions and keep non-oscillatory at discontinuities. Moreover, the velocity and pressure are oscillation-free at the interface and the volume fraction can stay in the interval [0,1].
189 - Ammar Hakim , James Juno 2020
Understanding fundamental kinetic processes is important for many problems, from plasma physics to gas dynamics. A first-principles approach to these problems requires a statistical description via the Boltzmann equation, coupled to appropriate field equations. In this paper we present a novel version of the discontinuous Galerkin (DG) algorithm to solve such kinetic equations. Unlike Monte-Carlo methods we use a continuum scheme in which we directly discretize the 6D phase-space using discontinuous basis functions. Our DG scheme eliminates counting noise and aliasing errors that would otherwise contaminate the delicate field-particle interactions. We use modal basis functions with reduced degrees of freedom to improve efficiency while retaining a high formal order of convergence. Our implementation incorporates a number of software innovations: use of JIT compiled top-level language, automatically generated computational kernels and a sophisticated shared-memory MPI implementation to handle velocity space parallelization.
In this manuscript we present an approach to analyze the discontinuous Galerkin solution for general quasilinear elliptic problems. This approach is sufficiently general to extend most of the well-known discretization schemes, including BR1, BR2, SIP G and LDG, to nonlinear cases in a canonical way, and to establish the stability of their solution. Furthermore, in case of monotone and globally Lipschitz problems, we prove the existence and uniqueness of the approximated solution and the $h$-optimality of the error estimate in the energy norm as well as in the $L_2$ norm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا