ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of mixed discontinuous Galerkin formulations for quasilinear elliptic problems

93   0   0.0 ( 0 )
 نشر من قبل Mohammad Zakerzadeh
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this manuscript we present an approach to analyze the discontinuous Galerkin solution for general quasilinear elliptic problems. This approach is sufficiently general to extend most of the well-known discretization schemes, including BR1, BR2, SIPG and LDG, to nonlinear cases in a canonical way, and to establish the stability of their solution. Furthermore, in case of monotone and globally Lipschitz problems, we prove the existence and uniqueness of the approximated solution and the $h$-optimality of the error estimate in the energy norm as well as in the $L_2$ norm.

قيم البحث

اقرأ أيضاً

147 - Limin Ma 2020
In this paper, we present a unified analysis of the superconvergence property for a large class of mixed discontinuous Galerkin methods. This analysis applies to both the Poisson equation and linear elasticity problems with symmetric stress formulati ons. Based on this result, some locally postprocess schemes are employed to improve the accuracy of displacement by order min(k+1, 2) if polynomials of degree k are employed for displacement. Some numerical experiments are carried out to validate the theoretical results.
A general analysis framework is presented in this paper for many different types of finite element methods (including various discontinuous Galerkin methods). For second order elliptic equation, this framework employs $4$ different discretization var iables, $u_h, bm{p}_h, check u_h$ and $check p_h$, where $u_h$ and $bm{p}_h$ are for approximation of $u$ and $bm{p}=-alpha abla u$ inside each element, and $ check u_h$ and $check p_h$ are for approximation of residual of $u$ and $bm{p} cdot bm{n}$ on the boundary of each element. The resulting 4-field discretization is proved to satisfy inf-sup conditions that are uniform with respect to all discretization and penalization parameters. As a result, most existing finite element and discontinuous Galerkin methods can be analyzed using this general framework by making appropriate choices of discretization spaces and penalization parameters.
In this paper we design and analyze a uniform preconditioner for a class of high order Discontinuous Galerkin schemes. The preconditioner is based on a space splitting involving the high order conforming subspace and results from the interpretation o f the problem as a nearly-singular problem. We show that the proposed preconditioner exhibits spectral bounds that are uniform with respect to the discretization parameters, i.e., the mesh size, the polynomial degree and the penalization coefficient. The theoretical estimates obtained are supported by several numerical simulations.
We present a discontinuous Galerkin internal-penalty scheme that is applicable to a large class of linear and non-linear elliptic partial differential equations. The scheme constitutes the foundation of the elliptic solver for the SpECTRE numerical r elativity code. As such it can accommodate (but is not limited to) elliptic problems in linear elasticity, general relativity and hydrodynamics, including problems formulated on a curved manifold. We provide practical instructions that make the scheme functional in a production code, such as instructions for imposing a range of boundary conditions, for implementing the scheme on curved and non-conforming meshes and for ensuring the scheme is compact and symmetric so it may be solved more efficiently. We report on the accuracy of the scheme for a suite of numerical test problems.
This work represents the first endeavor in using ultraweak formulations to implement high-order polygonal finite element methods via the discontinuous Petrov-Galerkin (DPG) methodology. Ultraweak variational formulations are nonstandard in that all t he weight of the derivatives lies in the test space, while most of the trial space can be chosen as copies of $L^2$-discretizations that have no need to be continuous across adjacent elements. Additionally, the test spaces are broken along the mesh interfaces. This allows one to construct conforming polygonal finite element methods, termed here as PolyDPG methods, by defining most spaces by restriction of a bounding triangle or box to the polygonal element. The only variables that require nontrivial compatibility across elements are the so-called interface or skeleton variables, which can be defined directly on the element boundaries. Unlike other high-order polygonal methods, PolyDPG methods do not require ad hoc stabilization terms thanks to the crafted stability of the DPG methodology. A proof of convergence of the form $h^p$ is provided and corroborated through several illustrative numerical examples. These include polygonal meshes with $n$-sided convex elements and with highly distorted concave elements, as well as the modeling of discontinuous material properties along an arbitrary interface that cuts a uniform grid. Since PolyDPG methods have a natural a posteriori error estimator a polygonal adaptive strategy is developed and compared to standard adaptivity schemes based on constrained hanging nodes. This work is also accompanied by an open-source $texttt{PolyDPG}$ software supporting polygonal and conventional elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا