ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-low switching current density in all-amorphous W-Hf / CoFeB / TaOx films

61   0   0.0 ( 0 )
 نشر من قبل Katharina Fritz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study current-induced deterministic magnetization switching and domain wall motion via polar Kerr microscopy in all-amorphous W$_{66}$Hf$_{34}$/CoFeB/TaO$_text{x}$ with perpendicular magnetic anisotropy and large spin Hall angle. Investigations of magnetization switching as a function of in-plane assist field and current pulse-width yield switching current densities as low as $3times 10^{9}$ A/m$^2$. We accredit this low switching current density to a low depinning current density, which was obtained from measurements of domain wall displacements upon current injection. This correlation is verified by investigations of a Ta/CoFeB/MgO/Ta reference sample, which showed critical current densities of at least one order of magnitude larger, respectively.



قيم البحث

اقرأ أيضاً

Magnetic skyrmions are topologically stable spin swirling particle like entities which are appealing for next generation spintronic devices. The expected low critical current density for the motion of skyrmions makes them potential candidates for fut ure energy efficient electronic devices. Several heavy metal/ferromagnetic (HM/FM) systems have been explored in the past decade to achieve faster skyrmion velocity at low current densities. In this context, we have studied Pt/CoFeB/MgO heterostructures in which skyrmions have been stabilized at room temperature (RT). It has been observed that the shape of the skyrmions are perturbed even by the small stray field arising from low moment magnetic tips while performing the magnetic force microscopy (MFM), indicating presence of low pinning landscape in the samples. This hypothesis is indeed confirmed by the low threshold current density to drive the skyrmions in our sample, at velocities of few 10 m/s.
Current-driven magnetization switching in low-resistance Co40Fe40B20/MgO/Co40Fe40B20 magnetic tunnel junctions (MTJs) is reported. The critical-current densities Jc required for current-driven switching in samples annealed at 270C and 300C are found to be as low as 7.8 x 10^5 A/cm^2 and 8.8 x 10^5 A/cm^2 with accompanying tunnel magnetoresistance (TMR) ratios of 49% and 73 %, respectively. Further annealing of the samples at 350C increases TMR ratio to 160 %, while accompanying Jc increases to 2.5 x 10^6 A/cm^2. We attribute the low Jc to the high spin-polarization of tunnel current and small MsV product of the CoFeB single free layer, where Ms is the saturation magnetization and V the volume of the free layer.
181 - Jinsong Xu , C.L. Chien 2021
Voltage control of magnetism and spintronics have been highly desirable, but rarely realized. In this work, we show voltage-controlled spin-orbit torque (SOT) switching in W/CoFeB/MgO films with perpendicular magnetic anisotropy (PMA) with voltage ad ministered through SrTiO3 with a high dielectric constant. We show that a DC voltage can significantly lower PMA by 45%, reduce switching current by 23%, and increase the damping-like torque as revealed by the first and second-harmonic measurements. These are characteristics that are prerequisites for voltage-controlled and voltage-select SOT switching spintronic devices.
We studied the resistive memory switching in pulsed laser deposited amorphous LaHoO3 (LHO) thin films for non-volatile resistive random access memory (RRAM) applications. Nonpolar resistive switching (RS) was achieved in PtLHOPt memory cells with all four possible RS modes ( positive unipolar, positive bipolar, negative unipolar, and negative bipolar) having high RON and ROFF ratios (in the range of 104 to 105) and non-overlapping switching voltages (set voltage, VON 3.6 to 4.2 V and reset voltage, VOFF 1.3 to 1.6 V) with a small variation of about 5 to 8 percent. X ray photoelectron spectroscopic studies together with temperature dependent switching characteristics revealed the formation of metallic holmium (Ho) and oxygen vacancies (VO) constituted conductive nanofilaments (CNFs) in the low resistance state (LRS). Detailed analysis of current versus voltage characteristics further corroborated the formation of CNFs based on metal like (Ohmic) conduction in LRS. Simmons Schottky emission was found to be the dominant charge transport mechanism in the high resistance state.
We demonstrate spin-orbit torque (SOT) switching of amorphous CoTb single layer films with perpendicular magnetic anisotropy (PMA). The switching sustains even the film thickness is above 10 nm, where the critical switching current density keeps almo st constant. Without the need of overcoming the strong interfacial Dzyaloshinskii-Moriya interaction caused by the heavy metal, a quite low assistant field of ~20 Oe is sufficient to realize the fully switching. The SOT effective field decreases and undergoes a sign change with the decrease of the Tb-concentration, implying that a combination of the spin Hall effect from both Co and Tb as well as an asymmetric spin current absorption accounts for the SOT switching mechanism. Our findings would advance the use of magnetic materials with bulk PMA for energy-efficient and thermal-stable non-volatile memories, and add a different dimension for understanding the ordering and asymmetry in amorphous thin films.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا