ﻻ يوجد ملخص باللغة العربية
Magnetized jets in GRBs and AGNs are thought to be efficient accelerators of particles, however, the process responsible for the acceleration is still a matter of active debate. In this work, we study the kink-instability in non-rotating force-free jets using first-principle particle-in-cell simulations. We obtain similar overall evolution of the instability as found in MHD simulations. The instability first generates large scale current sheets, which at later times break up into small-scale turbulence. Reconnection in these sheets proceeds in the strong guide field regime, which results in a formation of steep power laws in the particle spectra. Later evolution shows heating of the plasma, which is driven by small-amplitude turbulence induced by the kink instability. These two processes energize particles due to a combination of ideal and non-ideal electric fields.
In this chapter, we review some features of particle acceleration in astrophysical jets. We begin by describing four observational results relating to the topic, with particular emphasis on jets in active galactic nuclei and parallels between differe
Particle acceleration in magnetized relativistic jets still puzzles theorists, specially when one tries to explain the highly variable emission observed in blazar jets or gamma-ray bursts putting severe constraints on current models. In this work we
We propose a new acceleration mechanism for charged particles by using cylindrical or spherical non-linear acoustic waves propagating in ion-electron plasma. The acoustic wave, which is described by the cylindrical or spherical Kortweg-de Vries equat
Using analytical and numerical methods (fluid and particle-in-cell simulations) we study a number of model problems involving merger of magnetic flux tubes in relativistic magnetically-dominated plasma. Mergers of current-carrying flux tubes (exempli
Hot accretion flows contain collisionless plasmas that are believed to be capable of accelerating particles to very high energies, as a result of turbulence generated by the magnetorotational instability (MRI). We conduct unstratified shearing-box si