ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle acceleration by ion-acoustic solitons in plasma

87   0   0.0 ( 0 )
 نشر من قبل Ken Matsuno
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new acceleration mechanism for charged particles by using cylindrical or spherical non-linear acoustic waves propagating in ion-electron plasma. The acoustic wave, which is described by the cylindrical or spherical Kortweg-de Vries equation, grows in its wave height as the wave shrinks to the center. Charged particles confined by the electric potential accompanied with the shrinking wave get energy by repetition of reflections. We obtain power law spectrums of energy for accelerated particles. As an application, we discuss briefly that high energy particles coming from the Sun are produced by the present mechanism.

قيم البحث

اقرأ أيضاً

Particle acceleration and heating at mildly relativistic magnetized shocks in electron-ion plasma are investigated with unprecedentedly high-resolution two-dimensional particle-in-cell simulations that include ion-scale shock rippling. Electrons are super-adiabatically heated at the shock, and most of the energy transfer from protons to electrons takes place at or downstream of the shock. We are the first to demonstrate that shock rippling is crucial for the energization of electrons at the shock. They remain well below equipartition with the protons. The downstream electron spectra are approximately thermal with a limited supra-thermal power-law component. Our results are discussed in the context of wakefield acceleration and the modelling of electromagnetic radiation from blazar cores.
In this chapter, we review some features of particle acceleration in astrophysical jets. We begin by describing four observational results relating to the topic, with particular emphasis on jets in active galactic nuclei and parallels between differe nt sources. We then discuss the ways in which particles can be accelerated to high energies in magnetised plasmas, focusing mainly on shock acceleration, second-order Fermi and magnetic reconnection; in the process, we attempt to shed some light on the basic conditions that must be met by any mechanism for the various observational constraints to be satisfied. We describe the limiting factors for the maximum particle energy and briefly discuss multimessenger signals from neutrinos and ultrahigh energy cosmic rays, before describing the journey of jet plasma from jet launch to cocoon with reference to the different acceleration mechanisms. We conclude with some general comments on the future outlook.
Nonthermal relativistic plasmas are ubiquitous in astrophysical systems like pulsar wind nebulae and active galactic nuclei, as inferred from their emission spectra. The underlying nonthermal particle acceleration (NTPA) processes have traditionally been modeled with a Fokker-Planck (FP) diffusion-advection equation in momentum space. In this paper, we directly test the FP framework in ab-initio kinetic simulations of driven magnetized turbulence in relativistic pair plasma. By statistically analyzing the motion of tracked particles, we demonstrate the diffusive nature of NTPA and measure the FP energy diffusion ($D$) and advection ($A$) coefficients as functions of particle energy $gamma m_e c^2$. We find that $D(gamma)$ scales as $gamma^2$ in the high-energy nonthermal tail, in line with 2nd-order Fermi acceleration theory, but has a much weaker scaling at lower energies. We also find that $A$ is not negligible and reduces NTPA by tending to pull particles towards the peak of the particle energy distribution. This study provides strong support for the FP picture of turbulent NTPA, thereby enhancing our understanding of space and astrophysical plasmas.
A possible solution to the unexplained high intensity hard x-ray (HXR) emission observable during solar flares was investigated via 3D fully relativistic, electromagnetic particle-in-cell (PIC) simulations with realistic ion to electron mass ratio. A beam of accelerated electrons was injected into a magnetised, Maxwellian, homogeneous and inhomogeneous background plasma. The electron distribution function was unstable to the beam-plasma instability and was shown to generate Langmuir waves, while relaxing to plateau formation. In order to estimate the role of the background density gradient on an unbound (infinite spatial extent) beam, three different scenarios were investigated: a) a uniform density background; b) a weak density gradient, n_R/n_L=3; c) a strong gradient case, n_R/n_L=10, where n_R and n_L denote background electron densities on the left and right edges of the simulation box respectively. The strong gradient case produced the largest fraction of electrons beyond 15 v_th. Further, two cases (uniform and strong gradient background) with spatially localized beam injections were performed aiming to show drifts of the generated Langmuir wave wavenumbers, as suggested in previous studies. For the strong gradient case, the Langmuir wave power is shown to drift to smaller wavenumbers, as found in previous quasi-linear simulations.
Magnetized jets in GRBs and AGNs are thought to be efficient accelerators of particles, however, the process responsible for the acceleration is still a matter of active debate. In this work, we study the kink-instability in non-rotating force-free j ets using first-principle particle-in-cell simulations. We obtain similar overall evolution of the instability as found in MHD simulations. The instability first generates large scale current sheets, which at later times break up into small-scale turbulence. Reconnection in these sheets proceeds in the strong guide field regime, which results in a formation of steep power laws in the particle spectra. Later evolution shows heating of the plasma, which is driven by small-amplitude turbulence induced by the kink instability. These two processes energize particles due to a combination of ideal and non-ideal electric fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا