ﻻ يوجد ملخص باللغة العربية
In this paper, we study the generalized Heisenberg ferromagnet equation, namely, the M-CVI equation. This equation is integrable. The integrable motion of the space curves induced by the M-CVI equation is presented. Using this result, the Lakshmanan (geometrical) equivalence between the M-CVI equation and the two-component Camassa-Holm equation is established. Note that these equations are gauge equivalent each to other.
In this paper, we provide the geometric formulation to the two-component Camassa-Holm equation (2-mCHE). We also study the relation between the 2-mCHE and the M-CV equation. We have shown that these equations arise from the invariant space curve flow
We study the integrability and equivalence of a generalized Heisenberg ferromagnet-type equation (GHFE). The different forms of this equation as well as its reduction are presented. The Lax representation (LR) of the equation is obtained. We observe
In the present paper, we investigate some geometrical properties of the Camass-Holm equation (CHE). We establish the geometrical equivalence between the CHE and the M-CIV equation using a link with the motion of curves. We also show that these two equations are gauge equivalent each to other.
These results continue our studies of integrable generalized Heisenberg ferromagnet-type equations (GHFE) and their equivalent counterparts. We consider the GHFE which is the spin equivalent of the Zakharov-Ito equation (ZIE). We have established tha
We provide a construction of the two-component Camassa-Holm (CH-2) hierarchy employing a new zero-curvature formalism and identify and describe in detail the isospectral set associated to all real-valued, smooth, and bounded algebro-geometric solutio