ترغب بنشر مسار تعليمي؟ اضغط هنا

An ancient double degenerate merger in the Milky Way halo

71   0   0.0 ( 0 )
 نشر من قبل Adela Kawka
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis and re-appraisal of the massive, carbon-enriched (DQ) white dwarf (WD) LP 93-21. Its high mass (~1 M_sun) and membership to the class of warm DQ WDs, combined with its peculiar halo kinematics suggest that this object is the product of an ancient stellar merger event, most likely that of two WDs. Furthermore, the kinematics places this object on a highly retrograde orbit driven by the accretion of a dwarf galaxy onto the Milky Way that occurred at a red shift greater than 1.5. As the product of a stellar merger LP 93-21 is probably representative of the whole class of warm/hot DQ WDs.

قيم البحث

اقرأ أيضاً

HD 144941 is an extreme He (EHe) star, a rare class of subdwarf OB star formed from the merger of two white dwarf (WD) stars. Uniquely amongst EHe stars, its light curve has been reported to be modulated entirely by rotation, suggesting the presence of a magnetic field. Here we report the first high-resolution spectropolarimetric observations of HD 144941, in which we detect an extremely strong magnetic field both in circular polarization (with a line-of-sight magnetic field averaged over the stellar disk $langle B_z rangle sim -8$ kG) and in Zeeman splitting of spectral lines (yielding a magnetic modulus of $langle B rangle sim 17$ kG). We also report for the first time weak H$alpha$ emission consistent with an origin an a Centrifugal Magnetosphere (CM). HD 144941s atmospheric parameters could be consistent with either a subdwarf or a main sequence (MS) star, and its surface abundances are neither similar to other EHe stars nor to He-strong magnetic stars. However, its H$alpha$ emission properties can only be reproduced if its mass is around 1 M$_odot$, indicating that it must be a post-MS object. Since there is no indication of binarity, it is unlikely to be a stripped star, and was therefore most likely produced in a WD merger. HD 144941 is therefore further evidence that mergers are a viable pathway for the generation of fossil magnetic fields.
99 - G. C. Myeong 2018
We analyse the structure of the local stellar halo of the Milky Way using $sim$ 60000 stars with full phase space coordinates extracted from the SDSS--{it Gaia} catalogue. We display stars in action space as a function of metallicity in a realistic a xisymmetric potential for the Milky Way Galaxy. The metal-rich population is more distended towards high radial action $J_R$ as compared to azimuthal or vertical action, $J_phi$ or $J_z$. It has a mild prograde rotation $(langle v_phi rangle approx 25$ km s$^{-1}$), is radially anisotropic and highly flattened with axis ratio $q approx 0.6 - 0.7$. The metal-poor population is more evenly distributed in all three actions. It has larger prograde rotation $(langle v_phi rangle approx 50$ km s$^{-1}$), a mild radial anisotropy and a roundish morphology ($qapprox 0.9$). We identify two further components of the halo in action space. There is a high energy, retrograde component that is only present in the metal-rich stars. This is suggestive of an origin in a retrograde encounter, possibly the one that created the stripped dwarf galaxy nucleus, $omega$Centauri. Also visible as a distinct entity in action space is a resonant component, which is flattened and prograde. It extends over a range of metallicities down to [Fe/H] $approx -3$. It has a net outward radial velocity $langle v_R rangle approx 12$ km s$^{-1}$ within the Solar circle at $|z| <3.5$ kpc. The existence of resonant stars at such extremely low metallicities has not been seen before.
We present a low metallicity map of the Milky Way consisting of $sim$111,000 giants with $-3.5 lesssim$ [Fe/H] $lesssim -$0.75, based on public photometry from the second data release of the SkyMapper survey. These stars extend out to $sim$7kpc from the solar neighborhood and cover the main Galactic stellar populations, including the thick disk and the inner halo. Notably, this map can reliably differentiate metallicities down to [Fe/H] $sim -3.0$, and thus provides an unprecedented view into the ancient, metal-poor Milky Way. Among the more metal-rich stars in our sample ([Fe/H] $> -2.0$), we recover a clear spatial dependence of decreasing mean metallicity as a function of scale height that maps onto the thick disk component of the Milky Way. When only considering the very metal-poor stars in our sample ([Fe/H] $< -$2), we recover no such spatial dependence in their mean metallicity out to a scale height of $|Z|sim7$ kpc. We find that the metallicity distribution function (MDF) of the most metal-poor stars in our sample ($-3.0 <$ [Fe/H] $< -2.3$) is well fit with an exponential profile with a slope of $Deltalog(N)/Delta$[Fe/H] = 1.52$pm$0.05, and shifts to $Deltalog(N)/Delta$[Fe/H] = 1.53$pm$0.10 after accounting for target selection effects. For [Fe/H] $< -2.3$, the MDF is largely insensitive to scale height $|Z|$ out to $sim5$kpc, showing that very and extremely metal-poor stars are in every galactic component.
In 1998 several papers claim the detection of an ubiquitous gaseous phase within the Galactic halo. Here we like to focus on the detections of X-ray emitting gas within the Galactic halo as well as the discovery of a pervasive neutral Galactic halo g as. We discuss critically the major differences between the recent publications as well as the limitations of the analyses.
We aim at analysing systematically the distribution and physical properties of neutral and mildly ionised gas in the Milky Way halo, based on a large absorption-selected data set. Multi-wavelength studies were performed combining optical absorption l ine data of CaII and NaI with follow-up HI 21-cm emission line observations along 408 sight lines towards low- and high-redshift QSOs. We made use of archival optical spectra obtained with UVES/VLT. HI data were extracted from the Effelsberg-Bonn HI survey and the Galactic All-Sky survey. For selected sight lines we obtained deeper follow-up observations using the Effelsberg 100-m telescope. CaII (NaI) halo absorbers at intermediate and high radial velocities are present in 40-55% (20-35%) of the sightlines, depending on the column density threshold chosen. Many halo absorbers show multi-component absorption lines, indicating the presence of sub-structure. In 65% of the cases, absorption is associated with HI 21-cm emission. The CaII (NaI) column density distribution function follows a power-law with a slope of -2.2 (-1.4). Our absorption-selected survey confirms our previous results that the Milky Way halo is filled with a large number of neutral gas structures whose high column density tail represents the population of common HI high- and intermediate-velocity clouds seen in 21-cm observations. We find that CaII/NaI column density ratios in the halo absorbers are typically smaller than those in the Milky Way disc, in the gas in the Magellanic Clouds, and in damped Lyman-alpha systems. The small ratios (prominent in particular in high-velocity components) indicate a lower level of Ca depletion onto dust grains in Milky Way halo absorbers compared to gas in discs and inner regions of galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا