ترغب بنشر مسار تعليمي؟ اضغط هنا

The Metal-Poor Metallicity Distribution of the Ancient Milky Way

62   0   0.0 ( 0 )
 نشر من قبل Anirudh Chiti
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a low metallicity map of the Milky Way consisting of $sim$111,000 giants with $-3.5 lesssim$ [Fe/H] $lesssim -$0.75, based on public photometry from the second data release of the SkyMapper survey. These stars extend out to $sim$7kpc from the solar neighborhood and cover the main Galactic stellar populations, including the thick disk and the inner halo. Notably, this map can reliably differentiate metallicities down to [Fe/H] $sim -3.0$, and thus provides an unprecedented view into the ancient, metal-poor Milky Way. Among the more metal-rich stars in our sample ([Fe/H] $> -2.0$), we recover a clear spatial dependence of decreasing mean metallicity as a function of scale height that maps onto the thick disk component of the Milky Way. When only considering the very metal-poor stars in our sample ([Fe/H] $< -$2), we recover no such spatial dependence in their mean metallicity out to a scale height of $|Z|sim7$ kpc. We find that the metallicity distribution function (MDF) of the most metal-poor stars in our sample ($-3.0 <$ [Fe/H] $< -2.3$) is well fit with an exponential profile with a slope of $Deltalog(N)/Delta$[Fe/H] = 1.52$pm$0.05, and shifts to $Deltalog(N)/Delta$[Fe/H] = 1.53$pm$0.10 after accounting for target selection effects. For [Fe/H] $< -2.3$, the MDF is largely insensitive to scale height $|Z|$ out to $sim5$kpc, showing that very and extremely metal-poor stars are in every galactic component.

قيم البحث

اقرأ أيضاً

148 - M. Ness , K. Freeman 2015
The Galactic bulge of the Milky Way is made up of stars with a broad range of metallicity, -3.0 < [Fe/H] < 1 dex. The mean of the Metallicity Distribution Function (MDF) decreases as a function of height z from the plane and, more weakly, with galact ic radius. The most metal rich stars in the inner Galaxy are concentrated to the plane and the more metal poor stars are found predominantly further from the plane, with an overall vertical gradient in the mean of the MDF of about -0.45 dex/kpc. This vertical gradient is believed to reflect the changing contribution with height of different populations in the inner-most region of the Galaxy. The more metal rich stars of the bulge are part of the boxy/peanut structure and comprise stars in orbits which trace out the underlying X-shape. There is still a lack of consensus on the origin of the metal poor stars ([Fe/H] < -0.5) in the region of the bulge. Some studies attribute the more metal poor stars of the bulge to the thick disk and stellar halo that are present in the inner region, and other studies propose that the metal poor stars are a distinct old spheroid bulge population. Understanding the origin of the populations that make up the MDF of the bulge, and identifying if there is a unique bulge population which has formed separately from the disk and halo, has important consequences for identifying the relevant processes in the the formation and evolution of the Milky Way.
The Pristine survey uses narrow-band photometry to derive precise metallicities down to the extremely metal-poor regime ([Fe/H] < -3), and currently consists of over 4 million FGK-type stars over a sky area of $sim 2~500, mathrm{deg}^2$. We focus our analysis on a subsample of $sim 80~000$ main sequence turnoff stars with heliocentric distances between 6 and 20 kpc, which we take to be a representative sample of the inner halo. The resulting metallicity distribution function (MDF) has a peak at [Fe/H] = -1.6, and a slope of $Delta$(LogN)/$Delta[Fe/H] = 1.0 pm 0.1$ in the metallicity range of -3.4 < [Fe/H] < -2.5. This agrees well with a simple closed-box chemical enrichment model in this range, but is shallower than previous spectroscopic MDFs presented in the literature, suggesting that there may be a larger proportion of metal-poor stars in the inner halo than previously reported. We identify the Monoceros/TriAnd/ACS/EBS/A13 structure in metallicity space in a low latitude field in the anticenter direction, and also discuss the possibility that the inner halo is dominated by a single, large merger event, but cannot strongly support or refute this idea with the current data. Finally, based on the MDF of field stars, we estimate the number of expected metal-poor globular clusters in the Milky Way halo to be 5.4 for [Fe/H] < -2.5 and 1.5 for [Fe/H] < -3, suggesting that the lack of low metallicity globular clusters in the Milky Way is not due simply to statistical undersampling.
We use Gaia DR2 astrometric and photometric data, published radial velocities and MESA models to infer distances, orbits, surface gravities, and effective temperatures for all ultra metal-poor stars ($FeH<-4.0$ dex) available in the literature. Assum ing that these stars are old ($>11Gyr$) and that they are expected to belong to the Milky Way halo, we find that these 42 stars (18 dwarf stars and 24 giants or sub-giants) are currently within $sim20kpc$ of the Sun and that they map a wide variety of orbits. A large fraction of those stars remains confined to the inner parts of the halo and was likely formed or accreted early on in the history of the Milky Way, while others have larger apocentres ($>30kpc$), hinting at later accretion from dwarf galaxies. Of particular interest, we find evidence that a significant fraction of all known UMP stars ($sim26$%) are on prograde orbits confined within $3kpc$ of the Milky Way plane ($J_z < 100 kms kpc$). One intriguing interpretation is that these stars belonged to the massive building block(s) of the proto-Milky Way that formed the backbone of the Milky Way disc. Alternatively, they might have formed in the early disc and have been dynamically heated, or have been brought into the Milky Way by one or more accretion events whose orbit was dragged into the plane by dynamical friction before disruption. The combination of the exquisite Gaia DR2 data and surveys of the very metal-poor sky opens an exciting era in which we can trace the very early formation of the Milky Way.
The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium (metals) have been f ound in the outer regions (halo) of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions (bulges) of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that the most metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.
Context. The TOPoS project has the goal to find and analyse Turn-Off (TO) stars of extremely low metallicity. To select the targets for spectroscopic follow-up at high spectral resolution, we have relied on low-resolution spectra from the Sloan Digit al Sky Survey. Aims. In this paper we use the metallicity estimates we have obtained from our analysis of the SDSS spectra to construct the metallicity distribution function (MDF) of the Milky Way, with special emphasis on its metal-weak tail. The goal is to provide the underlying distribution out of which the TOPoS sample was extracted. Methods. We make use of SDSS photometry, Gaia photometry and distance estimates derived from the Gaia parallaxes to derive a metallicity estimate for a large sample of over 24 million TO stars. This sample is used to derive the metallicity bias of the sample for which SDSS spectra are available. Results. We determined that the spectroscopic sample is strongly biased in favour of metal-poor stars, as intended. A comparison with the unbiased photometric sample allows to correct for the selection bias. We select a sub-sample of stars with reliable parallaxes for which we combine the SDSS radial velocities with Gaia proper motions and parallaxes to compute actions and orbital parameters in the Galactic potential. This allows us to characterize the stars dynamically, and in particular to select a sub-sample that belongs to the Gaia-Sausage-Enceladus (GSE) accretion event. We are thus able to provide also the MDF of GSE. Conclusions. The metal-weak tail derived in our study is very similar to that derived in the H3 survey and in the Hamburg/ESO Survey. This allows us to average the three MDFs and provide an error bar for each metallicity bin. Inasmuch the GSE structure is representative of the progenitor galaxy that collided with the Milky Way, that galaxy appears to be strongly deficient in metal-poor stars compared to the Milky Way, suggesting that the metal-weak tail of the latter has been largely formed by accretion of low mass galaxies rather than massive galaxies, such as the GSE progenitor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا