ترغب بنشر مسار تعليمي؟ اضغط هنا

Construction of the Supersymmetric Path Integral: A Survey

65   0   0.0 ( 0 )
 نشر من قبل Matthias Ludewig
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Matthias Ludewig




اسأل ChatGPT حول البحث

This is a survey based on joint work with Florian Hanisch and Batu Guneysu reporting on a rigorous construction of the supersymmetric path integral associated to compact spin manifolds.

قيم البحث

اقرأ أيضاً

The path integral quantization method is applied to a relativistically covariant version of the Hopfield model, which represents a very interesting mesoscopic framework for the description of the interaction between quantum light and dielectric quant um matter, with particular reference to the context of analogue gravity. In order to take into account the constraints occurring in the model, we adopt the Faddeev-Jackiw approach to constrained quantization in the path integral formalism. In particular we demonstrate that the propagator obtained with the Faddeev-Jackiw approach is equivalent to the one which, in the framework of Dirac canonical quantization for constrained systems, can be directly computed as the vacuum expectation value of the time ordered product of the fields. Our analysis also provides an explicit example of quantization of the electromagnetic field in a covariant gauge and coupled with the polarization field, which is a novel contribution to the literature on the Faddeev-Jackiw procedure.
Path integrals constitute powerful representations for both quantum and stochastic dynamics. Yet despite many decades of intensive studies, there is no consensus on how to formulate them for dynamics in curved space, or how to make them covariant wit h respect to nonlinear transform of variables. In this work, we construct rigorous and covariant formulations of time-slicing path integrals for quantum and classical stochastic dynamics in curved space. We first establish a rigorous criterion for correct time-slice actions of path integrals (Lemma 1). This implies the existence of infinitely many equivalent representations for time-slicing path integral. We then show that, for any dynamics with second order generator, all time-slice actions are asymptotically equivalent to a Gaussian (Lemma 2). Using these results, we further construct a continuous family of equivalent actions parameterized by an interpolation parameter $alpha in [0,1]$ (Lemma 3). The action generically contains a spurious drift term linear in $Delta boldsymbol x$, whose concrete form depends on $alpha$. Finally we also establish the covariance of our path-integral formalism, by demonstrating how the action transforms under nonlinear transform of variables. The $alpha = 0$ representation of time-slice action is particularly convenient because it is Gaussian and invariant, as long as $Delta boldsymbol x$ transforms according to Itos formula.
As the loop space of a Riemannian manifold is infinite-dimensional, it is a non-trivial problem to make sense of the top degree component of a differential form on it. In this paper, we show that a formula from finite dimensions generalizes to assign a sensible top degree component to certain composite forms, obtained by wedging with the exponential (in the exterior algebra) of the canonical 2-form on the loop space. The result is a section on the Pfaffian line bundle on the loop space. We then identify this with a section of the line bundle obtained by transgression of the spin lifting gerbe. These results are a crucial ingredient for defining the fermionic part of the supersymmetric path integral on the loop space.
We consider the $U(1)$ Chern-Simons gauge theory defined in a general closed oriented 3-manifold $M$; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The nonperturbati ve path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent $U(1)$ principal bundles over $M$; the different sectors of the configuration space are labelled by the elements of the first homology group of $M$ and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the extent of the nonperturbative contributions to the mean values. The functional integration is achieved in any 3-manifold $M$, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin-Turaev surgery invariants.
106 - Tiejun Li , Feng Lin 2015
Motivated by the study of rare events for a typical genetic switching model in systems biology, in this paper we aim to establish the general two-scale large deviations for chemical reaction systems. We build a formal approach to explicitly obtain th e large deviation rate functionals for the considered two-scale processes based upon the second-quantization path integral technique. We get three important types of large deviation results when the underlying two times scales are in three different regimes. This is realized by singular perturbation analysis to the rate functionals obtained by path integral. We find that the three regimes possess the same deterministic mean-field limit but completely different chemical Langevin approximations. The obtained results are natural extensions of the classical large volume limit for chemical reactions. We also discuss its implication on the single-molecule Michaelis-Menten kinetics. Our framework and results can be applied to understand general multi-scale systems including diffusion processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا