ﻻ يوجد ملخص باللغة العربية
Motivated by the study of rare events for a typical genetic switching model in systems biology, in this paper we aim to establish the general two-scale large deviations for chemical reaction systems. We build a formal approach to explicitly obtain the large deviation rate functionals for the considered two-scale processes based upon the second-quantization path integral technique. We get three important types of large deviation results when the underlying two times scales are in three different regimes. This is realized by singular perturbation analysis to the rate functionals obtained by path integral. We find that the three regimes possess the same deterministic mean-field limit but completely different chemical Langevin approximations. The obtained results are natural extensions of the classical large volume limit for chemical reactions. We also discuss its implication on the single-molecule Michaelis-Menten kinetics. Our framework and results can be applied to understand general multi-scale systems including diffusion processes.
For diffusive many-particle systems such as the SSEP (symmetric simple exclusion process) or independent particles coupled with reservoirs at the boundaries, we analyze the density fluctuations conditioned on current integrated over a large time. We
We present a systematic analysis of stochastic processes conditioned on an empirical measure $Q_T$ defined in a time interval $[0,T]$ for large $T$. We build our analysis starting from a discrete time Markov chain. Results for a continuous time Marko
We formulate the large deviations for a class of two scale chemical kinetic processes motivated from biological applications. The result is successfully applied to treat a genetic switching model with positive feedbacks. The corresponding Hamiltonian
Path integrals constitute powerful representations for both quantum and stochastic dynamics. Yet despite many decades of intensive studies, there is no consensus on how to formulate them for dynamics in curved space, or how to make them covariant wit
The path integral quantization method is applied to a relativistically covariant version of the Hopfield model, which represents a very interesting mesoscopic framework for the description of the interaction between quantum light and dielectric quant