ﻻ يوجد ملخص باللغة العربية
We study a wide class of non-convex non-concave min-max games that generalizes over standard bilinear zero-sum games. In this class, players control the inputs of a smooth function whose output is being applied to a bilinear zero-sum game. This class of games is motivated by the indirect nature of the competition in Generative Adversarial Networks, where players control the parameters of a neural network while the actual competition happens between the distributions that the generator and discriminator capture. We establish theoretically, that depending on the specific instance of the problem gradient-descent-ascent dynamics can exhibit a variety of behaviors antithetical to convergence to the game theoretically meaningful min-max solution. Specifically, different forms of recurrent behavior (including periodicity and Poincare recurrence) are possible as well as convergence to spurious (non-min-max) equilibria for a positive measure of initial conditions. At the technical level, our analysis combines tools from optimization theory, game theory and dynamical systems.
Min-max saddle point games appear in a wide range of applications in machine leaning and signal processing. Despite their wide applicability, theoretical studies are mostly limited to the special convex-concave structure. While some recent works gene
Many recent AI architectures are inspired by zero-sum games, however, the behavior of their dynamics is still not well understood. Inspired by this, we study standard gradient descent ascent (GDA) dynamics in a specific class of non-convex non-concav
In this paper we propose several adaptive gradient methods for stochastic optimization. Unlike AdaGrad-type of methods, our algorithms are based on Armijo-type line search and they simultaneously adapt to the unknown Lipschitz constant of the gradien
A dynamical system is defined in terms of the gradient of a payoff function. Dynamical variables are of two types, ascent and descent. The ascent variables move in the direction of the gradient, while the descent variables move in the opposite direct
In this paper we consider non zero-sum games where multiple players control the drift of a process, and their payoffs depend on its ergodic behaviour. We establish their connection with systems of Ergodic BSDEs, and prove the existence of a Nash equi