ﻻ يوجد ملخص باللغة العربية
Parametric correlations are studied in several classes of covariant density functional theories (CDFTs) using a statistical analysis in a large parameter hyperspace. In the present manuscript, we investigate such correlations for two specific types of models, namely, for models with density dependent meson exchange and for point coupling models. Combined with the results obtained previously in Ref. [1] for a non-linear meson exchange model, these results indicate that parametric correlations exist in all major classes of CDFTs when the functionals are fitted to the ground state properties of finite nuclei and to nuclear matter properties. In particular, for the density dependence in the isoscalar channel only one parameter is really independent. Accounting for these facts potentially allows one to reduce the number of free parameters considerably.
We show that the notion of partial dynamical symmetry is robust and founded on a microscopic many-body theory of nuclei. Based on the universal energy density functional framework, a general quantal boson Hamiltonian is derived and shown to have esse
Machine learning is employed to build an energy density functional for self-bound nuclear systems for the first time. By learning the kinetic energy as a functional of the nucleon density alone, a robust and accurate orbital-free density functional f
We introduce a finite-range pseudopotential built as an expansion in derivatives up to next-to-next-to-next-to-leading order (N$^3$LO) and we calculate the corresponding nonlocal energy density functional (EDF). The coupling constants of the nonlocal
It is known that some well-established parametrizations of the EDF do not always provide converged results for nuclei and a qualitative link between this finding and the appearance of finite-size instabilities of SNM near saturation density when comp
We discuss the construction of a nuclear Energy Density Functional (EDF) from ab initio calculations, and we advocate the need of a methodical approach that is free from ad hoc assumptions. The equations of state (EoS) of symmetric nuclear and pure n