ﻻ يوجد ملخص باللغة العربية
We develop an analytic approach to the four-point crossing equation in CFT, for general spacetime dimension. In a unitary CFT, the crossing equation (for, say, the s- and t-channel expansions) can be thought of as a vector equation in an infinite-dimensional space of complex analytic functions in two variables, which satisfy a boundedness condition in the u-channel Regge limit. We identify a useful basis for this space of functions, consisting of the set of s- and t-channel conformal blocks of double-twist operators in mean field theory. We describe two independent algorithms to construct the dual basis of linear functionals, and work out explicitly many examples. Our basis of functionals appears to be closely related to the CFT dispersion relation recently derived by Carmi and Caron-Huot.
Motivated by applications to critical phenomena and open theoretical questions, we study conformal field theories with $O(m)times O(n)$ global symmetry in $d=3$ spacetime dimensions. We use both analytic and numerical bootstrap techniques. Using the
The light cone OPE limit provides a significant amount of information regarding the conformal field theory (CFT), like the high-low temperature limit of the partition function. We started with the light cone bootstrap in the {it general} CFT ${}_2$ w
We study the two-point function of local operators in the presence of a defect in a generic conformal field theory. We define two pairs of cross ratios, which are convenient in the analysis of the OPE in the bulk and defect channel respectively. The
In this work, we formulate a path-integral optimization for two dimensional conformal field theories perturbed by relevant operators. We present several evidences how this optimization mechanism works, based on calculations in free field theories as
We study some aspects of conformal field theories at finite temperature in momentum space. We provide a formula for the Fourier transform of a thermal conformal block and study its analytic properties. In particular we show that the Fourier transform