ترغب بنشر مسار تعليمي؟ اضغط هنا

A Basis of Analytic Functionals for CFTs in General Dimension

93   0   0.0 ( 0 )
 نشر من قبل Dalimil Mazac
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop an analytic approach to the four-point crossing equation in CFT, for general spacetime dimension. In a unitary CFT, the crossing equation (for, say, the s- and t-channel expansions) can be thought of as a vector equation in an infinite-dimensional space of complex analytic functions in two variables, which satisfy a boundedness condition in the u-channel Regge limit. We identify a useful basis for this space of functions, consisting of the set of s- and t-channel conformal blocks of double-twist operators in mean field theory. We describe two independent algorithms to construct the dual basis of linear functionals, and work out explicitly many examples. Our basis of functionals appears to be closely related to the CFT dispersion relation recently derived by Carmi and Caron-Huot.



قيم البحث

اقرأ أيضاً

Motivated by applications to critical phenomena and open theoretical questions, we study conformal field theories with $O(m)times O(n)$ global symmetry in $d=3$ spacetime dimensions. We use both analytic and numerical bootstrap techniques. Using the analytic bootstrap, we calculate anomalous dimensions and OPE coefficients as power series in $varepsilon=4-d$ and in $1/n$, with a method that generalizes to arbitrary global symmetry. Whenever comparison is possible, our results agree with earlier results obtained with diagrammatic methods in the literature. Using the numerical bootstrap, we obtain a wide variety of operator dimension bounds, and we find several islands (isolated allowed regions) in parameter space for $O(2)times O(n)$ theories for various values of $n$. Some of these islands can be attributed to fixed points predicted by perturbative methods like the $varepsilon$ and large-$n$ expansions, while others appear to arise due to fixed points that have been claimed to exist in resummations of perturbative beta functions.
114 - Yuya Kusuki 2018
The light cone OPE limit provides a significant amount of information regarding the conformal field theory (CFT), like the high-low temperature limit of the partition function. We started with the light cone bootstrap in the {it general} CFT ${}_2$ w ith $c>1$. For this purpose, we needed an explicit asymptotic form of the Virasoro conformal blocks in the limit $z to 1$, which was unknown until now. In this study, we computed it in general by studying the pole structure of the {it fusion matrix} (or the crossing kernel). Applying this result to the light cone bootstrap, we obtained the universal total twist (or equivalently, the universal binding energy) of two particles at a large angular momentum. In particular, we found that the total twist is saturated by the value $frac{c-1}{12}$ if the total Liouville momentum exceeds beyond the {it BTZ threshold}. This might be interpreted as a black hole formation in AdS${}_3$. As another application of our light cone singularity, we studied the dynamics of entanglement after a global quench and found a Renyi phase transition as the replica number was varied. We also investigated the dynamics of the 2nd Renyi entropy after a local quench. We also provide a universal form of the Regge limit of the Virasoro conformal blocks from the analysis of the light cone singularity. This Regge limit is related to the general $n$-th Renyi entropy after a local quench and out of time ordered correlators.
We study the two-point function of local operators in the presence of a defect in a generic conformal field theory. We define two pairs of cross ratios, which are convenient in the analysis of the OPE in the bulk and defect channel respectively. The new coordinates have a simple geometric interpretation, which can be exploited to efficiently compute conformal blocks in a power expansion. We illustrate this fact in the case of scalar external operators. We also elucidate the convergence properties of the bulk and defect OPE decompositions of the two-point function. In particular, we remark that the expansion of the two-point function in powers of the new cross ratios converges everywhere, a property not shared by the cross ratios customarily used in defect CFT. We comment on the crucial relevance of this fact for the numerical bootstrap.
In this work, we formulate a path-integral optimization for two dimensional conformal field theories perturbed by relevant operators. We present several evidences how this optimization mechanism works, based on calculations in free field theories as well as general arguments of RG flows in field theories. Our optimization is performed by minimizing the path-integral complexity functional that depends on the metric and also on the relevant couplings. Then, we compute the optimal metric perturbatively and find that it agrees with the time slice of the hyperbolic metric perturbed by a scalar field in the AdS/CFT correspondence. Last but not the least, we estimate contributions to complexity from relevant perturbations.
153 - Andrea Manenti 2019
We study some aspects of conformal field theories at finite temperature in momentum space. We provide a formula for the Fourier transform of a thermal conformal block and study its analytic properties. In particular we show that the Fourier transform vanishes when the conformal dimension and spin are those of a double twist operator $Delta = 2Delta_phi + ell + 2n$. By analytically continuing to Lorentzian signature we show that the spectral density at high spatial momenta has support on the spectrum condition $|omega| > |k|$. This leads to a series of sum rules. Finally, we explicitly match the thermal block expansion with the momentum space Greens function at finite temperature in several examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا