ﻻ يوجد ملخص باللغة العربية
We study the two-point function of local operators in the presence of a defect in a generic conformal field theory. We define two pairs of cross ratios, which are convenient in the analysis of the OPE in the bulk and defect channel respectively. The new coordinates have a simple geometric interpretation, which can be exploited to efficiently compute conformal blocks in a power expansion. We illustrate this fact in the case of scalar external operators. We also elucidate the convergence properties of the bulk and defect OPE decompositions of the two-point function. In particular, we remark that the expansion of the two-point function in powers of the new cross ratios converges everywhere, a property not shared by the cross ratios customarily used in defect CFT. We comment on the crucial relevance of this fact for the numerical bootstrap.
We study $mathrm{AdS}_3times S^3/mathbb{Z}_ktimes {tilde S}^3/mathbb{Z}_{k}$ solutions to M-theory preserving $mathcal{N}=(0,4)$ supersymmetries, arising as near-horizon limits of M2-M5 brane intersections ending on M5-branes, with both types of five
A salient feature of the Schr{o}dinger equation is that the classical radial momentum term $p_{r}^{2}$ in polar coordinates is replaced by the operator $hat{P}^{dagger}_{r} hat{P}_{r}$, where the operator $hat{P}_{r}$ is not hermitian in general. Thi
In this work, we formulate a path-integral optimization for two dimensional conformal field theories perturbed by relevant operators. We present several evidences how this optimization mechanism works, based on calculations in free field theories as
We construct classical theories for scalar fields in arbitrary Carroll spacetimes that are invariant under Carrollian diffeomorphisms and Weyl transformations. When the local symmetries are gauge fixed these theories become Carrollian conformal field
A local SL(2,Z) transformation on the Type IIB brane configuration gives rise to an interesting class of superconformal field theories, known as the S-fold CFTs. Previously it has been proposed that the corresponding quiver theory has a link involvin