ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Fair and Interpretable Representations via Linear Orthogonalization

64   0   0.0 ( 0 )
 نشر من قبل Keith Burghardt
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

To reduce human error and prejudice, many high-stakes decisions have been turned over to machine algorithms. However, recent research suggests that this does not remove discrimination, and can perpetuate harmful stereotypes. While algorithms have been developed to improve fairness, they typically face at least one of three shortcomings: they are not interpretable, their prediction quality deteriorates quickly compared to unbiased equivalents, and they are not easily transferable across models. To address these shortcomings, we propose a geometric method that removes correlations between data and any number of protected variables. Further, we can control the strength of debiasing through an adjustable parameter to address the trade-off between prediction quality and fairness. The resulting features are interpretable and can be used with many popular models, such as linear regression, random forest, and multilayer perceptrons. The resulting predictions are found to be more accurate and fair compared to several state-of-the-art fair AI algorithms across a variety of benchmark datasets. Our work shows that debiasing data is a simple and effective solution toward improving fairness.

قيم البحث

اقرأ أيضاً

Learning data representations that are transferable and are fair with respect to certain protected attributes is crucial to reducing unfair decisions while preserving the utility of the data. We propose an information-theoretically motivated objectiv e for learning maximally expressive representations subject to fairness constraints. We demonstrate that a range of existing approaches optimize approximations to the Lagrangian dual of our objective. In contrast to these existing approaches, our objective allows the user to control the fairness of the representations by specifying limits on unfairness. Exploiting duality, we introduce a method that optimizes the model parameters as well as the expressiveness-fairness trade-off. Empirical evidence suggests that our proposed method can balance the trade-off between multiple notions of fairness and achieves higher expressiveness at a lower computational cost.
We propose a novel algorithm for learning fair representations that can simultaneously mitigate two notions of disparity among different demographic subgroups in the classification setting. Two key components underpinning the design of our algorithm are balanced error rate and conditional alignment of representations. We show how these two components contribute to ensuring accuracy parity and equalized false-positive and false-negative rates across groups without impacting demographic parity. Furthermore, we also demonstrate both in theory and on two real-world experiments that the proposed algorithm leads to a better utility-fairness trade-off on balanced datasets compared with existing algorithms on learning fair representations for classification.
Feature attribution (FA), or the assignment of class-relevance to different locations in an image, is important for many classification problems but is particularly crucial within the neuroscience domain, where accurate mechanistic models of behaviou rs, or disease, require knowledge of all features discriminative of a trait. At the same time, predicting class relevance from brain images is challenging as phenotypes are typically heterogeneous, and changes occur against a background of significant natural variation. Here, we present a novel framework for creating class specific FA maps through image-to-image translation. We propose the use of a VAE-GAN to explicitly disentangle class relevance from background features for improved interpretability properties, which results in meaningful FA maps. We validate our method on 2D and 3D brain image datasets of dementia (ADNI dataset), ageing (UK Biobank), and (simulated) lesion detection. We show that FA maps generated by our method outperform baseline FA methods when validated against ground truth. More significantly, our approach is the first to use latent space sampling to support exploration of phenotype variation. Our code will be available online at https://github.com/CherBass/ICAM.
In this paper, we advocate for representation learning as the key to mitigating unfair prediction outcomes downstream. Motivated by a scenario where learned representations are used by third parties with unknown objectives, we propose and explore adv ersarial representation learning as a natural method of ensuring those parties act fairly. We connect group fairness (demographic parity, equalized odds, and equal opportunity) to different adversarial objectives. Through worst-case theoretical guarantees and experimental validation, we show that the choice of this objective is crucial to fair prediction. Furthermore, we present the first in-depth experimental demonstration of fair transfer learning and demonstrate empirically that our learned representations admit fair predictions on new tasks while maintaining utility, an essential goal of fair representation learning.
Most systems and learning algorithms optimize average performance or average loss -- one reason being computational complexity. However, many objectives of practical interest are more complex than simply average loss. This arises, for example, when b alancing performance or loss with fairness across people. We prove that, from a computational perspective, optimizing arbitrary objectives that take into account performance over a small number of groups is not significantly harder to optimize than average performance. Our main result is a polynomial-time reduction that uses a linear optimizer to optimize an arbitrary (Lipschitz continuous) function of performance over a (constant) number of possibly-overlapping groups. This includes fairness objectives over small numbers of groups, and we further point out that other existing notions of fairness such as individual fairness can be cast as convex optimization and hence more standard convex techniques can be used. Beyond learning, our approach applies to multi-objective optimization, more generally.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا