ﻻ يوجد ملخص باللغة العربية
Wasserstein distance-based distributionally robust optimization (DRO) has received much attention lately due to its ability to provide a robustness interpretation of various learning models. Moreover, many of the DRO problems that arise in the learning context admits exact convex reformulations and hence can be tackled by off-the-shelf solvers. Nevertheless, the use of such solvers severely limits the applicability of DRO in large-scale learning problems, as they often rely on general purpose interior-point algorithms. On the other hand, there are very few works that attempt to develop fast iterative methods to solve these DRO problems, which typically possess complicated structures. In this paper, we take a first step towards resolving the above difficulty by developing a first-order algorithmic framework for tackling a class of Wasserstein distance-based distributionally robust logistic regression (DRLR) problem. Specifically, we propose a novel linearized proximal ADMM to solve the DRLR problem, whose objective is convex but consists of a smooth term plus two non-separable non-smooth terms. We prove that our method enjoys a sublinear convergence rate. Furthermore, we conduct three different experiments to show its superb performance on both synthetic and real-world datasets. In particular, our method can achieve the same accuracy up to 800+ times faster than the standard off-the-shelf solver.
Inverse multiobjective optimization provides a general framework for the unsupervised learning task of inferring parameters of a multiobjective decision making problem (DMP), based on a set of observed decisions from the human expert. However, the pe
In prescriptive analytics, the decision-maker observes historical samples of $(X, Y)$, where $Y$ is the uncertain problem parameter and $X$ is the concurrent covariate, without knowing the joint distribution. Given an additional covariate observation
Wasserstein textbf{D}istributionally textbf{R}obust textbf{O}ptimization (DRO) is concerned with finding decisions that perform well on data that are drawn from the worst-case probability distribution within a Wasserstein ball centered at a certain n
We propose kernel distributionally robust optimization (Kernel DRO) using insights from the robust optimization theory and functional analysis. Our method uses reproducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity set
Logistic regression is one of the most popular methods in binary classification, wherein estimation of model parameters is carried out by solving the maximum likelihood (ML) optimization problem, and the ML estimator is defined to be the optimal solu