ترغب بنشر مسار تعليمي؟ اضغط هنا

Star formation at the Galactic Centre: coevolution of multiple young stellar discs

138   0   0.0 ( 0 )
 نشر من قبل Alessandra Mastrobuono-Battisti
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Studies of the Galactic Centre suggest that in-situ star formation may have given rise to the observed stellar population near the central supermassive black hole (SMBH). Direct evidence for a recent starburst is provided by the currently observed young stellar disc (2-7 Myr) in the central 0.5 pc of the Galaxy. This result suggests that star formation in galactic nuclei may occur close to the SMBH and produce initially flattened stellar discs. Here we explore the possible build-up and evolution of nuclear stellar clusters near SMBHs through in-situ star formation producing stellar discs similar to those observed in the Galactic Centre and other nuclei. We make use of N-body simulations to model the evolution of multiple young stellar discs and explore the potential observable signatures imprinted by such processes. Each of the five simulated discs is evolved for 100 Myr before the next one is introduced in the system. We find that populations born at different epochs show different morphologies and kinematics. Older and presumably more metal poor populations are more relaxed and extended, while younger populations show a larger amount of rotation and flattening. We conclude that star formation in central discs can reproduce the observed properties of multiple stellar populations in galactic nuclei differing in age, metallicity and kinematic properties.



قيم البحث

اقرأ أيضاً

(Abridged) The Galactic Center (GC) hosts a population of young stars some of which seem to form mutually inclined discs of clockwise and counter clockwise rotating stars. We present a warped disc origin scenario for these stars assuming that an init ially flat accretion disc becomes warped due to the Pringle instability, or due to Bardeen-Petterson effect, before it fragments to stars. We show that this is plausible if the star formation efficiency $epsilon_{SF} lesssim 1$, and the viscosity parameter $alpha sim 0.1$. After fragmentation, we model the disc as a collection of concentric, circular, mutually tilted rings, and construct warped disc models for mass ratios and other parameters relevant to the GC environment, but also for more massive discs. We take into account the discs self-gravity and the torques exerted by a surrounding star cluster. We show that a self-gravitating low-mass disc ($M_d / M_{bh} sim 0.001$) precesses in integrity in the life-time of the stars, but precesses freely when the torques from a non-spherical cluster are included. An intermediate-mass disc ($M_d / M_{bh} sim 0.01$) breaks into pieces which precess independently in the self-gravity-only case, and become disrupted in the presence of the star cluster torques. For a high-mass disc ($M_d / M_{bh} sim 0.1$) the evolution is dominated by self-gravity and the disc is broken but not dissolved. The time-scale after which the disc breaks scales almost linearly with ($M_d / M_{bh}$) for self-gravitating models. Typical values are longer than the age of the stars for a low mass disc, and are in the range $sim 8 times 10^4-10^5$ yr for high and intermediate-mass discs respectively. None of these models explain the rotation properties of the two GC discs, but a comparison of them with the clockwise disc shows that the lowest mass model in a spherical star cluster matches the data best.
The Central Molecular Zone (CMZ), a $sim$200 pc sized region around the Galactic Centre, is peculiar in that it shows a star formation rate (SFR) that is suppressed with respect to the available dense gas. To study the SFR in the CMZ, young stellar o bjects (YSOs) can be investigated. Here we present radio observations of 334 2.2 $mu$m infrared sources that have been identified as YSO candidates. Our goal is to investigate the presence of centimetre wavelength radio continuum counterparts to this sample of YSO candidates which we use to constrain the current SFR in the CMZ. As part of the GLOSTAR survey, D-configuration VLA data was obtained for the Galactic Centre, covering -2$^{circ}<l<$2$^{circ}$ and -1$^{circ}<b<$1$^{circ}$, with a frequency coverage of 4-8 GHz. We matched YSOs with radio continuum sources based on selection criteria and classified these radio sources as potential HII regions and determined their physical properties. Of the 334 YSO candidates, we found 35 with radio continuum counterparts. We find that 94 YSOs are associated with dense dust condensations identified in the 870 $mu$m ATLASGAL survey, of which 14 have a GLOSTAR counterpart. Of the 35 YSOs with radio counterparts, 11 are confirmed as HII regions, based on their spectral indices and the literature. We estimated their Lyman continuum photon flux in order to estimate the mass of the ionising star. Combining these with known sources, the present-day SFR in the CMZ is calculated to be $sim$0.068 M$_{odot}$ yr$^{-1}$, which is $sim$6.8$%$ of the Galactic SFR. Candidate YSOs that lack radio counterparts may not have yet evolved to the stage of exhibiting an HII region or, conversely, are older and have dispersed their natal clouds. Since many lack dust emission, the latter is more likely. Our SFR estimate in the CMZ is in agreement with previous estimates in the literature.
The inner few hundred parsecs of the Milky Way harbours gas densities, pressures, velocity dispersions, an interstellar radiation field and a cosmic ray ionisation rate orders of magnitude higher than the disc; akin to the environment found in star-f orming galaxies at high-redshift. Previous studies have shown that this region is forming stars at a rate per unit mass of dense gas which is at least an order of magnitude lower than in the disc, potentially violating theoretical predictions. We show that all observational star formation rate diagnostics - both direct counting of young stellar objects and integrated light measurements - are in agreement within a factor two, hence the low star formation rate is not the result of the systematic uncertainties that affect any one method. As these methods trace the star formation over different timescales, from $0.1 - 5$ Myr, we conclude that the star formation rate has been constant to within a factor of a few within this time period. We investigate the progression of star formation within gravitationally bound clouds on $sim$ parsec scales and find $1 - 4$ per cent of the cloud masses are converted into stars per free-fall time, consistent with a subset of the considered volumetric star formation models. However, discriminating between these models is obstructed by the current uncertainties on the input observables and, most importantly and urgently, by their dependence on ill-constrained free parameters. The lack of empirical constraints on these parameters therefore represents a key challenge in the further verification or falsification of current star formation theories.
Within the central parsec of the Galaxy, several tens of young stars orbiting a central supermassive black hole are observed. A subset of these stars forms a coherently rotating disc. Other observations reveal a massive molecular torus which lies at a radius ~1.5pc from the centre. In this paper we consider the gravitational influence of the molecular torus upon the stars of the stellar disc. We derive an analytical formula for the rate of precession of individual stellar orbits and we show that it is highly sensitive upon the orbital semi-major axis and inclination with respect to the plane of the torus as well as on the mass of the torus. Assuming that both the stellar disc and the molecular torus are stable on the time-scale >6Myr, we constrain the mass of the torus and its inclination with respect to the young stellar disc. We further suggest that all young stars observed in the Galactic Centre may have a common origin in a single coherently rotating structure with an opening angle <5deg, which was partially destroyed (warped) during its lifetime by the gravitational influence of the molecular torus.
307 - Eric Feigelson 2009
Most stars are born in rich young stellar clusters (YSCs) embedded in giant molecular clouds. The most massive stars live out their short lives there, profoundly influencing their natal environments by ionizing HII regions, inflating wind-blown bubbl es, and soon exploding as supernovae. Thousands of lower-mass pre-main sequence stars accompany the massive stars, and the expanding HII regions paradoxically trigger new star formation as they destroy their natal clouds. While this schematic picture is established, our understanding of the complex astrophysical processes involved in clustered star formation have only just begun to be elucidated. The technologies are challenging, requiring both high spatial resolution and wide fields at wavelengths that penetrate obscuring molecular material and remove contaminating Galactic field stars. We outline several important projects for the coming decade: the IMFs and structures of YSCs; triggered star formation around YSC; the fate of OB winds; the stellar populations of Infrared Dark Clouds; the most massive star clusters in the Galaxy; tracing star formation throughout the Galactic Disk; the Galactic Center region and YSCs in the Magellanic Clouds. Programmatic recommendations include: developing a 30m-class adaptive optics infrared telescope; support for high-resolution and wide field X-ray telescopes; large-aperture sub-millimeter and far-infrared telescopes; multi-object infrared spectrographs; and both numerical and analytical theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا