ﻻ يوجد ملخص باللغة العربية
(Abridged) The Galactic Center (GC) hosts a population of young stars some of which seem to form mutually inclined discs of clockwise and counter clockwise rotating stars. We present a warped disc origin scenario for these stars assuming that an initially flat accretion disc becomes warped due to the Pringle instability, or due to Bardeen-Petterson effect, before it fragments to stars. We show that this is plausible if the star formation efficiency $epsilon_{SF} lesssim 1$, and the viscosity parameter $alpha sim 0.1$. After fragmentation, we model the disc as a collection of concentric, circular, mutually tilted rings, and construct warped disc models for mass ratios and other parameters relevant to the GC environment, but also for more massive discs. We take into account the discs self-gravity and the torques exerted by a surrounding star cluster. We show that a self-gravitating low-mass disc ($M_d / M_{bh} sim 0.001$) precesses in integrity in the life-time of the stars, but precesses freely when the torques from a non-spherical cluster are included. An intermediate-mass disc ($M_d / M_{bh} sim 0.01$) breaks into pieces which precess independently in the self-gravity-only case, and become disrupted in the presence of the star cluster torques. For a high-mass disc ($M_d / M_{bh} sim 0.1$) the evolution is dominated by self-gravity and the disc is broken but not dissolved. The time-scale after which the disc breaks scales almost linearly with ($M_d / M_{bh}$) for self-gravitating models. Typical values are longer than the age of the stars for a low mass disc, and are in the range $sim 8 times 10^4-10^5$ yr for high and intermediate-mass discs respectively. None of these models explain the rotation properties of the two GC discs, but a comparison of them with the clockwise disc shows that the lowest mass model in a spherical star cluster matches the data best.
Within the central parsec of the Galaxy, several tens of young stars orbiting a central supermassive black hole are observed. A subset of these stars forms a coherently rotating disc. Other observations reveal a massive molecular torus which lies at
Studies of the Galactic Centre suggest that in-situ star formation may have given rise to the observed stellar population near the central supermassive black hole (SMBH). Direct evidence for a recent starburst is provided by the currently observed yo
We model the effects of collisions and close encounters on the stellar populations observed in the Milky Way nuclear stellar cluster (NSC). Our analysis is based on $N$-body simulations in which the NSC forms by accretion of massive stellar clusters
Observations of massive stars within the central parsec of the Galaxy show that, while most stars orbit within a well-defined disc, a significant fraction have large eccentricities and / or inclinations with respect to the disc plane. Here, we invest
The interaction of Galactic-Centre (GC) super bubbles (GSB) with the gaseous disc and halo of the Milky Way is investigated using radio continuum, X-ray, HI and CO line surveys. The radio North Polar Spur (NPS) constitutes the brightest eastern ridge