ترغب بنشر مسار تعليمي؟ اضغط هنا

Surprises in the simultaneous X-ray and optical monitoring of pi Aqr

81   0   0.0 ( 0 )
 نشر من قبل Yael Naze
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To help constrain the origin of the peculiar X-ray emission of gamma Cas stars, we conducted a simultaneous optical and X-ray monitoring of pi Aqr in 2018. At that time, the star appeared optically bright and active, with a very strong Halpha emission. Our monitoring covers three 84d orbital cycles, allowing us to probe phase-locked variations as well as longer-term changes. In the new optical data, the radial velocity variations seem to span a smaller range than previously reported, which might indicate possible biases. The X-ray emission is variable, but without any obvious correlation with orbital phase or Halpha line strength. Furthermore, the average X-ray flux and the relative range of flux variations are similar to those recorded in previous data, although the latter data were taken when the star was less bright and its disk had nearly entirely disappeared. Only the local absorption component in the X-ray spectrum appears to have strengthened in the new data. This absence of large changes in X-ray properties despite dramatic disk changes appears at odds with previous observations of other gamma Cas stars. It also constrains scenarios proposed to explain the gamma Cas phenomenon.



قيم البحث

اقرأ أيضاً

We present the first ever X-ray data taken of an intermediate polar, FO Aqr, when in a low accretion state and during the subsequent recovery. The Swift and Chandra X-ray data taken during the low accretion state in July 2016 both show a softer spect rum when compared to archival data taken when FO Aqr was in a high state. The X-ray spectrum in the low state showed a significant increase in the ratio of the soft X-ray flux to the hard X-ray flux due to a change in the partial covering fraction of the white dwarf from $>85%$ to $70^{+5}_{-8}%$ and a change in the hydrogen column density within the disc from 19$^{+1.2}_{-0.9}times 10^{22}$ cm$^{-2}$ to 1.3$^{+0.6}_{-0.3}times 10^{22}$ cm$^{-2}$. XMM-Newton observations of FO Aqr during the subsequent recovery suggest that the system had not yet returned to its typical high state by November 2016, with the hydrogen column density within the disc found to be 15$^{+3.0}_{-2.0}$ cm$^{-2}$. The partial covering fraction varied in the recovery state between $85%$ and $95%$. The spin period of the white dwarf in 2014 and 2015 has also been refined to 1254.3342(8) s. Finally, we find an apparent phase difference between the high state X-ray pulse and recovery X-ray pulse of 0.17, which may be related to a restructuring of the X-ray emitting regions within the system.
The gamma-Cas category is a subgroup of Be stars displaying a strong, hard, and variable thermal X-ray emission. An XMM-Newton observation of pi Aqr reveals spectral and temporal characteristics that clearly make this Be star another member of the ga mma-Cas category. Furthermore, pi Aqr is a binary but, contrary to gamma-Cas, the nature of the companion to the Be star is known; it is a non-degenerate (stellar) object and its small separation from the Be star does not leave much room for a putative compact object close to the Be disk. This renders the accretion scenario difficult to apply in this system, and, hence, this discovery favors a disk-related origin for the gamma-Cas phenomenon.
Pre-main sequence stars are variable sources. In stars with disks, this variability is related to the morphology of the inner circumstellar region (<0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264. In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are analyzed in two different samples. In stars with variable extinction, we look for a simultaneous increase of optical extinction and X-ray absorption during the optical dips; in stars with accretion bursts, we search for soft X-ray emission and increasing X-ray absorption during the bursts. Results. We find evidence for coherent optical and X-ray flux variability among the stars with variable extinction. In 9/24 stars with optical dips, we observe a simultaneous increase of X-ray absorption and optical extinction. In seven dips, it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5/20 stars with optical accretion bursts, we observe increasing soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts, since favorable geometric configurations are required. The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts, we observe on average a larger soft X-ray spectral component not observed in non accreting stars.
We present the results of simultaneous radio and X-ray observations of PSR J1819-1458. Our 94-ks XMM-Newton observation of the high magnetic field 5*10^13 G pulsar reveals a blackbody spectrum (kT~130 eV) with a broad absorption feature, possibly com posed of two lines at ~1.0 and ~1.3 keV. We performed a correlation analysis of the X-ray photons with radio pulses detected in 16.2 hours of simultaneous observations at 1-2 GHz with the Green Bank, Effelsberg, and Parkes telescopes, respectively. Both the detected X-ray photons and radio pulses appear to be randomly distributed in time. We find tentative evidence for a correlation between the detected radio pulses and X-ray photons on timescales of less than 10 pulsar spin periods, with the probability of this occurring by chance being 0.46%. This suggests that the physical process producing the radio pulses may also heat the polar-cap.
Optical and near-infrared observations are compiled for the three gamma-ray binaries hosting Be stars: PSR B1259-63, LSI+61 303, and HESS J0632+057. The emissions from the Be disk are considered to vary according to the changes in its structure, some of which are caused by interactions with the compact object (e.g., tidal forces). Due to the high eccentricity and large orbit of these systems, the interactions -- and, hence the resultant observables -- depend on the orbital phase. To explore such variations, multi-band photometry and linear polarization were monitored for the three considered systems, using two 1.5 m-class telescopes: IRSF at the South African Astronomical Observatory and Kanata at the Higashi-Hiroshima Observatory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا