ﻻ يوجد ملخص باللغة العربية
We develop a statistical mechanical approach based on the replica method to study the design space of deep and wide neural networks constrained to meet a large number of training data. Specifically, we analyze the configuration space of the synaptic weights and neurons in the hidden layers in a simple feed-forward perceptron network for two scenarios: a setting with random inputs/outputs and a teacher-student setting. By increasing the strength of constraints,~i.e. increasing the number of training data, successive 2nd order glass transition (random inputs/outputs) or 2nd order crystalline transition (teacher-student setting) take place layer-by-layer starting next to the inputs/outputs boundaries going deeper into the bulk with the thickness of the solid phase growing logarithmically with the data size. This implies the typical storage capacity of the network grows exponentially fast with the depth. In a deep enough network, the central part remains in the liquid phase. We argue that in systems of finite width N, the weak bias field can remain in the center and plays the role of a symmetry-breaking field that connects the opposite sides of the system. The successive glass transitions bring about a hierarchical free-energy landscape with ultrametricity, which evolves in space: it is most complex close to the boundaries but becomes renormalized into progressively simpler ones in deeper layers. These observations provide clues to understand why deep neural networks operate efficiently. Finally, we present some numerical simulations of learning which reveal spatially heterogeneous glassy dynamics truncated by a finite width $N$ effect.
Recent advances in deep learning and neural networks have led to an increased interest in the application of generative models in statistical and condensed matter physics. In particular, restricted Boltzmann machines (RBMs) and variational autoencode
A recent 3-XORSAT challenge required to minimize a very complex and rough energy function, typical of glassy models with a random first order transition and a golf course like energy landscape. We present the ideas beyond the quasi-greedy algorithm a
In this chapter we discuss how the results developed within the theory of fractals and Self-Organized Criticality (SOC) can be fruitfully exploited as ingredients of adaptive network models. In order to maintain the presentation self-contained, we fi
We derive the spectral properties of adjacency matrix of complex networks and of their Laplacian by the replica method combined with a dynamical population algorithm. By assuming the order parameter to be a product of Gaussian distributions, the pres
We carefully investigate the two fundamental assumptions in the Stillinger-Weber analysis of the inherent structures (ISs) in the energy landscape and come to conclude that they cannot be validated. This explains some of the conflicting results betwe