ﻻ يوجد ملخص باللغة العربية
We present intensity interferometry of the luminous blue variable P Cyg in the light of its H$alpha$ emission performed with 1,m-class telescopes. We compare the measured visibility points to synthesized interferometric data based on the CMFGEN physical modeling of a high-resolution spectrum of P Cyg recorded almost simultaneously with our interferometry data. Tuning the stellar parameters of P Cyg and its H$alpha$ linear diameter we estimate the distance of P Cyg as $1.56pm0.25$~kpc, which is compatible within $1sigma$ with $1.36pm0.24$~kpc reported by the Gaia DR2 catalogue of parallaxes recently published. Both values are significantly smaller than the canonic value of $1.80pm0.10$~kpc usually adopted in literature. Our method used to calibrate the distance of P Cyg can apply to very massive and luminous stars both in our galaxy and neighbour galaxies and can improve the so-called Wind-Momentum Luminosity relation that potentially applies to calibrate cosmological candles in the local Universe.
The paper presents new results of the ongoing study of the unusual Lynx-Cancer void galaxy DDO 68 with record-low-metallicity regions (12+log(O/H) ~7.14) of the current star formation (SF). They include: a) a new spectrum and photometry with the 6-m
Stellar Intensity Interferometry is a technique based on the measurement of the second order spatial correlation of the light emitted from a star. The physical information provided by these measurements is the angular size and structure of the emitti
The VERITAS Imaging Air Cherenkov Telescope array (IACT) was augmented in 2019 with high-speed focal plane electronics to allow the use of VERITAS for Stellar Intensity Interferometry (SII) observations. Since that time, several improvements have bee
High angular resolution observations at optical wavelengths provide valuable insights in stellar astrophysics, directly measuring fundamental stellar parameters, and probing stellar atmospheres, circumstellar disks, elongation of rapidly rotating sta
Mass and radius measurements of stars are important inputs for models of stellar structure. Binary stars are of particular interest in this regard, because astrometry and spectroscopy of a binary together provide the masses of both stars as well as t